cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A185069 Primes of the form k*6^m +1 with k prime and m an integer.

Original entry on oeis.org

3, 13, 19, 31, 43, 67, 73, 79, 103, 109, 139, 181, 223, 283, 367, 397, 433, 439, 499, 607, 613, 619, 643, 787, 823, 829, 907, 1039, 1087, 1117, 1399, 1447, 1543, 1549, 1579, 1627, 1663, 1693, 1699, 1759, 1867, 1879, 1987, 2083, 2203, 2239, 2377
Offset: 1

Views

Author

Gilbert Mozzo, Feb 18 2011

Keywords

Comments

Companion sequence to A186782.

Examples

			5*6^1+1 = 31 is prime and therefore a term.
7*6^2+1 = 253 is composite and therefore not in the sequence.
17*6^13+1 = 222031798273 is prime and therefore a term (see also its companion in A186782).
		

Crossrefs

Programs

  • Magma
    IsA185069:=function(n); k:=n-1; while k mod 6 eq 0 do k:=(k div 6); end while; return IsPrime(k); end function; [ n: n in PrimesUpTo(3000) | IsA185069(n) ];
  • Mathematica
    Module[{upto=3000,pr},pr=PrimePi[upto]+1;Select[Sort[Flatten[ Table[ k*6^m+1,{k,Prime[Range[pr]]},{m,0,Log[6,(upto-1)/6]}]]],PrimeQ[#] && 185#<=upto&]](* Harvey P. Dale, Dec 30 2018 *)
  • Sage
    def is_A185069(n):
        k = n - 1
        while k % 6 == 0: k //= 6
        return is_prime(k)
    A185069_list = [p for p in primes(3000) if is_A185069(p)] # D. S. McNeil, Feb 20 2011
    

Extensions

Edited by N. J. A. Sloane, Feb 20 2011

A186811 Twin primes of the form k*6^m-1 and k*6^m+1, where k is prime.

Original entry on oeis.org

11, 13, 17, 19, 29, 31, 41, 43, 71, 73, 101, 103, 107, 109, 137, 139, 179, 181, 281, 283, 431, 433, 617, 619, 641, 643, 821, 823, 827, 829, 1697, 1699, 1877, 1879, 2081, 2083, 2237, 2239, 2381, 2383, 2591, 2593
Offset: 1

Views

Author

Gilbert Mozzo, Feb 27 2011

Keywords

Comments

Twins are obtained by comparing the values given in A185069 and A186782.

Examples

			17*6^13-1 and 17*6^13+1 are twins.
		

Crossrefs

Programs

  • Mathematica
    maxM = 5; r = Select[Prime[Range[PrimePi[2*6^maxM]]], PrimeQ[# + 2] &] + 1; u = Sort[Flatten[Table[Select[r,PrimeQ[#/6^k] &] - 1, {k, maxM}]]]; Sort[Join[u, u + 2]] (* T. D. Noe, Feb 28 2011 *)
Showing 1-2 of 2 results.