cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A141197 a(n) = the number of divisors of n that are each one less than a power of a prime.

Original entry on oeis.org

1, 2, 2, 3, 1, 4, 2, 4, 2, 3, 1, 6, 1, 3, 3, 5, 1, 5, 1, 4, 3, 3, 1, 8, 1, 3, 2, 5, 1, 7, 2, 5, 2, 2, 2, 8, 1, 2, 2, 6, 1, 6, 1, 4, 3, 3, 1, 10, 2, 3, 2, 5, 1, 5, 1, 6, 2, 3, 1, 10, 1, 3, 4, 5, 1, 6, 1, 3, 2, 5, 1, 11, 1, 2, 3, 3, 2, 6, 1, 8, 2, 3, 1, 9, 1, 2, 2, 6, 1, 8, 2, 4, 3, 2, 1, 11, 1, 3, 2, 5, 1, 5, 1
Offset: 1

Views

Author

Leroy Quet, Jun 12 2008

Keywords

Comments

A067513(n) <= a(n) <= A000005(n). [From Reinhard Zumkeller, Oct 06 2008]
a(A185208(n)) = 1. - Reinhard Zumkeller, Nov 01 2012

Examples

			The divisors of 9 are 1,3,9. 1 is one less than 2, a power of a prime. 3 is one less than 4, a power of a prime. And 9 is one less than 10, not a power of a prime. There are therefore 2 such divisors that are each one less than a power of a prime. So a(9)=2.
		

Crossrefs

Cf. A141198.
Cf. A049073.

Programs

  • Haskell
    a141197 = sum . map (a010055 . (+ 1)) . a027750_row
    -- Reinhard Zumkeller, Nov 01 2012
  • Mathematica
    a[n_] := Select[Divisors[n], PrimeNu[# + 1] == 1 &] // Length; Table[a[n], {n, 1, 105}] (* Jean-François Alcover, Aug 17 2013 *)
    Table[DivisorSum[n, 1 &, PrimePowerQ[# + 1] &], {n, 103}] (* Michael De Vlieger, Aug 29 2017 *)

Formula

a(n) = sum (A010055(A027750(n,k)): k=1..A000005(n)). - Reinhard Zumkeller, Nov 01 2012

Extensions

Added more terms. - Steven Bi (chenhsi(AT)stanford.edu), Dec 22 2008
Added more terms (Terms 27 - 50). Steven Bi (chenhsi(AT)stanford.edu), Jan 09 2009
Corrected and extended by Ray Chandler, Jun 25 2009

A261871 Numbers of the form (2*j-1)*(2^k-1); j>=1, k>=2.

Original entry on oeis.org

3, 7, 9, 15, 21, 27, 31, 33, 35, 39, 45, 49, 51, 57, 63, 69, 75, 77, 81, 87, 91, 93, 99, 105, 111, 117, 119, 123, 127, 129, 133, 135, 141, 147, 153, 155, 159, 161, 165, 171, 175, 177, 183, 189, 195, 201, 203, 207, 213, 217, 219, 225, 231, 237, 243, 245, 249, 255, 259, 261, 267, 273, 279, 285, 287, 291, 297, 301
Offset: 1

Views

Author

Bob Selcoe, Sep 04 2015

Keywords

Comments

Odd numbers complementary to A185208.
Lim_{n->inf.} a(n)/n > 6/(1 + Sum_{j>=1} (2/(2^(2j+1)-1))) ~ 4.375745.

Crossrefs

Cf. A185208.
Note that A191131, A261524, A261871, and A282572 are very similar and easily confused with each other.

Programs

  • Mathematica
    lmt = 310; Take[ Union@ Flatten@ Table[ (2j - 1)(2^k - 1), {j, lmt/4}, {k, 2, 1 + Log2[ lmt/(2j)] }], 68] (* Michael De Vlieger, Sep 04 2015 *) (* and modified by Robert G. Wilson v, Sep 05 2015 *)
  • PARI
    list(lim)=my(v=List(),t); for(k=2,logint(lim\1+1,2), t=2^k-1; forstep(j=1,lim\t,2, listput(v,t*j))); Set(v) \\ Charles R Greathouse IV, Sep 05 2015

Formula

2n < a(n) < 5n. For n > 51, 4.3n < a(n) < 4.5n. - Charles R Greathouse IV, Sep 05 2015

A049073 LCM of all divisors of d of n such that d+1 is a prime power.

Original entry on oeis.org

1, 2, 3, 4, 1, 6, 7, 8, 3, 10, 1, 12, 1, 14, 15, 16, 1, 18, 1, 20, 21, 22, 1, 24, 1, 26, 3, 28, 1, 30, 31, 16, 3, 2, 7, 36, 1, 2, 3, 40, 1, 42, 1, 44, 15, 46, 1, 48, 7, 10, 3, 52, 1, 18, 1, 56, 3, 58, 1, 60, 1, 62, 63, 16, 1, 66, 1, 4, 3, 70, 1, 72, 1, 2, 15, 4, 7, 78, 1, 80, 3, 82, 1, 84, 1
Offset: 1

Views

Author

David E. Daykin

Keywords

Comments

a(A185208(n)) = 1. - Reinhard Zumkeller, Nov 01 2012

Crossrefs

Programs

  • Haskell
    a049073 = foldl lcm 1 . filter ((== 1) . a010055 . (+ 1)) . a027750_row
    -- Reinhard Zumkeller, Nov 01 2012
  • Mathematica
    a[n_] := LCM @@ Select[Divisors[n], PrimeNu[# + 1] == 1 &]; Table[a[n], {n, 1, 85}] (* Jean-François Alcover, Aug 17 2013 *)

Extensions

More terms from Erich Friedman, Jun 03 2001

A219033 Numbers n such that n = x + y, sigma_1(n) = sigma_1(x) + sigma_1(y) and sigma_2(n) = sigma_2(x) + sigma_2(y).

Original entry on oeis.org

434, 2170, 4774, 5642, 7378, 8246, 9982, 10850, 12586, 16058, 17794, 18662, 20398, 23002, 23870, 25606, 26474, 28210, 29078, 30814, 31682, 34286, 36022, 36890, 38626, 41230, 42098, 43834, 44702, 47306, 49042, 49910, 52514, 54250, 55118, 56854, 59458, 60326
Offset: 1

Views

Author

Jon Perry, Nov 10 2012

Keywords

Comments

Conjecture: This sequence is infinite.
Conjecture: The sequence only consists of even numbers.
Conjecture: The partitions only consist of even numbers.
Conjecture: None satisfy sigma_3(n) = sigma_3(x) + sigma_3(y).
Conjecture: With the lower partition as 6*A185208(n) and the upper partition 214/3 = 71.3333... of this, then the equalities are satisfied.
The first 12 partitions are (428, 6), (2140, 30), (4708, 66), (5564, 78), (7276, 102), (8132, 114), (9844, 138), (10700, 150), (12412, 174), (15836, 222), (17548, 246), (18404, 258).
The first example of this ratio not being used is at a(67) = 103818 where (103554, 264) satisfies the equalities. Here the ratio is 1569/4 = 392.25. - Donovan Johnson, Nov 13 2012

Examples

			2140 + 30 = 2170.
sigma_1(2140) + sigma_1(30) = 4536 + 72 = 4608 = sigma_1(2170).
sigma_2(2140) + sigma_2(30) = 6251700 + 1300 = 6253000 = sigma_2(2170).
Hence, 2170 is in the sequence.
		

Crossrefs

Programs

  • JavaScript
    function divisorSum(n,x) {
    c=0;
    for (i=1;i<=n;i++) if (n%i==0) c+=Math.pow(i,x);
    return c;
    }
    ds=new Array();
    for (j=1;j<40001;j++) {
    ds[j]=new Array();
    ds[j][0]=divisorSum(j,1);
    ds[j][1]=divisorSum(j,2);
    }
    a=new Array();
    ac=0;
    for (j=1;j<20000;j++)
    for (k=1;k<=j;k++)
    if (ds[j][0]+ds[k][0]==ds[j+k][0] && ds[j][1]+ds[k][1]==ds[j+k][1]) a[ac++]=j+", "+k+" ::: ";
    a.sort(function(a, b) {return a-b;});
    i=0;
    while(i++
    				

Extensions

a(6) corrected and a(13)-a(38) from Donovan Johnson, Nov 10 2012
Showing 1-4 of 4 results.