A177267
Triangle read by rows: T(n,k) is the number of permutations of {1,2,...,n} having genus k (see first comment for definition of genus).
Original entry on oeis.org
1, 2, 0, 5, 1, 0, 14, 10, 0, 0, 42, 70, 8, 0, 0, 132, 420, 168, 0, 0, 0, 429, 2310, 2121, 180, 0, 0, 0, 1430, 12012, 20790, 6088, 0, 0, 0, 0, 4862, 60060, 174174, 115720, 8064, 0, 0, 0, 0, 16796, 291720, 1309308, 1624480, 386496, 0, 0, 0, 0, 0, 58786, 1385670, 9087078, 18748730, 10031736, 604800, 0, 0, 0, 0, 0, 208012, 6466460, 59306676, 188208020, 186698512, 38113920, 0
Offset: 1
T(3,1)=1 because 312 is the only permutation of {1,2,3} with genus 1 (we have p=312=(132), cp'=231*231=312=(132) and so g(p)=(1/2)(3+1-1-1)=1).
Triangle starts:
[ 1] 1,
[ 2] 2, 0,
[ 3] 5, 1, 0,
[ 4] 14, 10, 0, 0,
[ 5] 42, 70, 8, 0, 0,
[ 6] 132, 420, 168, 0, 0, 0,
[ 7] 429, 2310, 2121, 180, 0, 0, 0,
[ 8] 1430, 12012, 20790, 6088, 0, 0, 0, 0,
[ 9] 4862, 60060, 174174, 115720, 8064, 0, 0, 0, 0,
[10] 16796, 291720, 1309308, 1624480, 386496, 0, 0, 0, 0, 0,
[11] 58786, 1385670, 9087078, 18748730, 10031736, 604800, 0, 0, ...,
[12] 208012, 6466460, 59306676, 188208020, 186698512, 38113920, 0, ...,
[13] 742900, 29745716, 368588220, 1700309468, 2788065280, 1271140416, 68428800, 0, ...,
...
- S. Dulucq and R. Simion, Combinatorial statistics on alternating permutations, J. Algebraic Combinatorics, 8, 1998, 169-191.
Cf.
A178514 (genus of derangements),
A178515 (genus of involutions),
A178516 (genus of up-down permutations),
A178517 (genus of non-derangement permutations),
A178518 (permutations of [n] having genus 0 and p(1)=k),
A185209 (genus of connected permutations),
A218538 (genus of permutations avoiding [x,x+1]).
-
n := 8: with(combinat): P := permute(n): inv := proc (p) local j, q: for j to nops(p) do q[p[j]] := j end do: [seq(q[i], i = 1 .. nops(p))] end proc: nrcyc := proc (p) local nrfp, pc: nrfp := proc (p) local ct, j: ct := 0: for j to nops(p) do if p[j] = j then ct := ct+1 else end if end do: ct end proc: pc := convert(p, disjcyc): nops(pc)+nrfp(p) end proc: b := proc (p) local c: c := [seq(i+1, i = 1 .. nops(p)-1), 1]: [seq(c[p[j]], j = 1 .. nops(p))] end proc: gen := proc (p) options operator, arrow: (1/2)*nops(p)+1/2-(1/2)*nrcyc(p)-(1/2)*nrcyc(b(inv(p))) end proc: f[n] := sort(add(t^gen(P[j]), j = 1 .. factorial(n))): seq(coeff(f[n], t, j), j = 0 .. ceil((1/2)*n)-1); # yields the entries in the specified row n
# second Maple program:
b:= proc(n) option remember; `if`(n<2, 1, ((4*n-2)*
b(n-1)+(n-2)*(n-1)^2*expand(x*b(n-2)))/(n+1))
end:
T:= (n, k)-> coeff(b(n), x, k):
seq(seq(T(n, k), k=0..n-1), n=1..12); # Alois P. Heinz, Feb 16 2024
-
T[ n_, k_] := If[ n < 1 || k >= n, 0, Module[{pn = Table[i, {i, n}]}, Do[ pn[[i]] = ((4 i - 2) pn[[i - 1]] + x (i - 2) (i - 1)^2 pn[[i - 2]])/(i + 1) // Expand, {i, 3, n}]; Coefficient[pn[[n]], x, k]]]; (* Michael Somos, Sep 02 2017 *)
Terms for rows 12 and 13 from
Joerg Arndt, Jan 24 2011.
A178517
Triangle read by rows: T(n,k) is the number of non-derangement permutations of {1,2,...,n} having genus k (see first comment for definition of genus).
Original entry on oeis.org
1, 1, 0, 4, 0, 0, 11, 4, 0, 0, 36, 40, 0, 0, 0, 117, 290, 48, 0, 0, 0, 393, 1785, 1008, 0, 0, 0, 0, 1339, 9996, 12712, 1440, 0, 0, 0, 0, 4630, 52584, 123858, 48312, 0, 0, 0, 0, 0, 16193, 264720, 1027446, 904840, 80640, 0, 0, 0, 0, 0, 57201, 1290135, 7627158, 12449800, 3807936, 0
Offset: 1
T(3,0)=4 because all non-derangements of {1,2,3}, namely 123=(1)(2)(3), 132=(1)(23), 213=(12)(3), and 321=(13)(2) have genus 0. This follows easily from the fact that a permutation p of {1,2,...,n} has genus 0 if and only if the cycle decomposition of p gives a noncrossing partition of {1,2,...,n} and each cycle of p is increasing (see Lemma 2.1 of the Dulucq-Simion reference).
Triangle starts:
[ 1] 1,
[ 2] 1, 0,
[ 3] 4, 0, 0,
[ 4] 11, 4, 0, 0,
[ 5] 36, 40, 0, 0, 0,
[ 6] 117, 290, 48, 0, 0, 0,
[ 7] 393, 1785, 1008, 0, 0, 0, 0,
[ 8] 1339, 9996, 12712, 1440, 0, 0, 0, 0,
[ 9] 4630, 52584, 123858, 48312, 0, 0, 0, 0, 0,
[10] 16193, 264720, 1027446, 904840, 80640, 0, 0, 0, 0, 0,
[11] 57201, 1290135, 7627158, 12449800, 3807936, 0, 0, 0, 0, 0, 0,
[12] 203799, 6133930, 52188774, 140356480, 96646176, 7257600, 0, ...,
[13] 731602, 28603718, 335517468, 1373691176, 1749377344, 448306560, 0, ...,
...
- S. Dulucq and R. Simion, Combinatorial statistics on alternating permutations, J. Algebraic Combinatorics, 8 (1998), 169-191.
Cf.
A177267 (genus of all permutations).
Cf.
A178514 (genus of derangements),
A178515 (genus of involutions),
A178516 (genus of up-down permutations),
A178518 (permutations of [n] having genus 0 and p(1)=k),
A185209 (genus of connected permutations).
-
n := 7: with(combinat): P := permute(n): inv := proc (p) local j, q: for j to nops(p) do q[p[j]] := j end do: [seq(q[i], i = 1 .. nops(p))] end proc: nrfp := proc (p) local ct, j: ct := 0: for j to nops(p) do if p[j] = j then ct := ct+1 else end if end do: ct end proc: nrcyc := proc (p) local pc: pc := convert(p, disjcyc): nops(pc)+nrfp(p) end proc: b := proc (p) local c: c := [seq(i+1, i = 1 .. nops(p)-1), 1]: [seq(c[p[j]], j = 1 .. nops(p))] end proc: gen := proc (p) options operator, arrow: (1/2)*nops(p)+1/2-(1/2)*nrcyc(p)-(1/2)*nrcyc(b(inv(p))) end proc: NDER := {}: for i to factorial(n) do if nrfp(P[i]) > 0 then NDER := `union`(NDER, {P[i]}) else end if end do: f[n] := sort(add(t^gen(NDER[j]), j = 1 .. nops(NDER))): seq(coeff(f[n], t, j), j = 0 .. floor((1/2)*n)-1); # yields the entries in the specified row n
A218538
Triangle read by rows: T(n,k) is the number of permutations of{1,2,...,n} avoiding [x,x+1] having genus k (see first comment for definition of genus).
Original entry on oeis.org
1, 1, 0, 3, 0, 0, 7, 4, 0, 0, 19, 29, 5, 0, 0, 53, 180, 76, 0, 0, 0, 153, 1004, 901, 61, 0, 0, 0, 453, 5035, 8884, 2315, 0, 0, 0, 0, 1367, 23653, 74177, 46285, 2847, 0, 0, 0, 0, 4191, 106414, 546626, 667640, 143586, 0, 0, 0, 0, 0, 13015, 463740, 3658723, 7777935, 3896494, 209624, 0
Offset: 1
Triangle starts:
[ 1] 1,
[ 2] 1, 0,
[ 3] 3, 0, 0,
[ 4] 7, 4, 0, 0,
[ 5] 19, 29, 5, 0, 0,
[ 6] 53, 180, 76, 0, 0, 0,
[ 7] 153, 1004, 901, 61, 0, 0, 0,
[ 8] 453, 5035, 8884, 2315, 0, 0, 0, 0,
[ 9] 1367, 23653, 74177, 46285, 2847, 0, 0, 0, 0,
[10] 4191, 106414, 546626, 667640, 143586, 0, 0, 0, 0, 0,
[11] 13015, 463740, 3658723, 7777935, 3896494, 209624, 0, 0, 0, 0, 0,
[12] 40857, 1972339, 22712736, 77535694, 74678363, 13959422, 0, 0, ...,
[13] 129441, 8228981, 132804891, 685673340, 1131199122, 485204757, 23767241, 0, ...,
...
Cf.
A177267 (genus of all permutations).
Cf.
A178514 (genus of derangements),
A178515 (genus of involutions),
A178516 (genus of up-down permutations),
A178517 (genus of non-derangement permutations),
A178518 (permutations of [n] having genus 0 and p(1)=k),
A185209 (genus of connected permutations).
Showing 1-3 of 3 results.
Comments