A185212 a(n) = 12*n^2 - 8*n + 1.
1, 5, 33, 85, 161, 261, 385, 533, 705, 901, 1121, 1365, 1633, 1925, 2241, 2581, 2945, 3333, 3745, 4181, 4641, 5125, 5633, 6165, 6721, 7301, 7905, 8533, 9185, 9861, 10561, 11285, 12033, 12805, 13601, 14421, 15265, 16133, 17025, 17941, 18881, 19845, 20833
Offset: 0
Links
- Harvey P. Dale, Table of n, a(n) for n = 0..1000
- Leo Tavares, Illustration: Square Block Rays
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Programs
-
Haskell
a185212 = (+ 1) . (* 4) . a000567
-
Mathematica
Table[12n^2-8n+1,{n,0,50}] (* or *) LinearRecurrence[{3,-3,1},{1,5,33},50] (* Harvey P. Dale, Jul 07 2015 *)
-
PARI
a(n)=12*n^2-8*n+1 \\ Charles R Greathouse IV, Jun 17 2017
Formula
a(n) = 4*A000567(n) + 1.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) with a(0)=1, a(1)=5, a(2)=33. - Harvey P. Dale, Jul 07 2015
G.f.: (-1 - 2*x - 21*x^2)/(-1+x)^3. - Harvey P. Dale, Jul 07 2015
E.g.f.: (12*x^2 + 4*x + 1)*exp(x). - G. C. Greubel, Jun 25 2017
From Amiram Eldar, May 28 2022: (Start)
Sum_{n>=0} 1/a(n) = sqrt(3)*Pi/8 - 3*log(3)/8 + 1.
Sum_{n>=0} (-1)^n/a(n) = Pi/8 - sqrt(3)*arccoth(sqrt(3))/2 + 1. (End)
Comments