cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A185212 a(n) = 12*n^2 - 8*n + 1.

Original entry on oeis.org

1, 5, 33, 85, 161, 261, 385, 533, 705, 901, 1121, 1365, 1633, 1925, 2241, 2581, 2945, 3333, 3745, 4181, 4641, 5125, 5633, 6165, 6721, 7301, 7905, 8533, 9185, 9861, 10561, 11285, 12033, 12805, 13601, 14421, 15265, 16133, 17025, 17941, 18881, 19845, 20833
Offset: 0

Views

Author

Reinhard Zumkeller, Dec 20 2012

Keywords

Comments

Sequence found by reading the line from 1, in the direction 1, 5, and the same line from 5, in the direction 5, 33, ..., in the square spiral whose vertices are the generalized octagonal numbers A001082. - Omar E. Pol, May 08 2018

Crossrefs

For n > 0: odd terms in A001859.
Cf. A001082.

Programs

  • Haskell
    a185212 = (+ 1) . (* 4) . a000567
    
  • Mathematica
    Table[12n^2-8n+1,{n,0,50}] (* or *) LinearRecurrence[{3,-3,1},{1,5,33},50] (* Harvey P. Dale, Jul 07 2015 *)
  • PARI
    a(n)=12*n^2-8*n+1 \\ Charles R Greathouse IV, Jun 17 2017

Formula

a(n) = 4*A000567(n) + 1.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) with a(0)=1, a(1)=5, a(2)=33. - Harvey P. Dale, Jul 07 2015
G.f.: (-1 - 2*x - 21*x^2)/(-1+x)^3. - Harvey P. Dale, Jul 07 2015
E.g.f.: (12*x^2 + 4*x + 1)*exp(x). - G. C. Greubel, Jun 25 2017
a(n) = A016754(n-1) + 4*A000384(n). - Leo Tavares, May 21 2022
From Amiram Eldar, May 28 2022: (Start)
Sum_{n>=0} 1/a(n) = sqrt(3)*Pi/8 - 3*log(3)/8 + 1.
Sum_{n>=0} (-1)^n/a(n) = Pi/8 - sqrt(3)*arccoth(sqrt(3))/2 + 1. (End)