cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 17 results. Next

A033886 Number of connected 4-regular simple graphs on n vertices with girth at least 4.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 2, 2, 12, 31, 220, 1606, 16828, 193900, 2452818, 32670330, 456028474, 6636066099, 100135577747, 1582718912968
Offset: 0

Views

Author

N. J. A. Sloane, Dec 17 2000

Keywords

Comments

The null graph on 0 vertices is vacuously connected and 4-regular; since it is acyclic, it has infinite girth. - Jason Kimberley, Jan 29 2011

Crossrefs

From Jason Kimberley, Mar 19 2010 and Jan 28 2011: (Start)
4-regular simple graphs with girth at least 4: this sequence (connected), A185244 (disconnected), A185344 (not necessarily connected).
Connected k-regular simple graphs with girth at least 4: A186724 (any k), A186714 (triangle); specified degree k: A185114 (k=2), A014371 (k=3), this sequence (k=4), A058275 (k=5), A058276 (k=6), A181153 (k=7), A181154 (k=8), A181170 (k=9).
Connected 4-regular simple graphs with girth at least g: A006820 (g=3), this sequence (g=4), A058343 (g=5), A058348 (g=6).
Connected 4-regular simple graphs with girth exactly g: A184943 (g=3), A184944 (g=4), A184945 (g=5). (End)

Extensions

By running M. Meringer's GENREG at U. Newcastle for 6.25, 107 and 1548 processor days, a(21), a(22), and a(23) were completed by Jason Kimberley on Dec 06 2009, Mar 19 2010, and Nov 02 2011.

A185224 Number of disconnected 2-regular simple graphs on n vertices with girth at least 4.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 2, 4, 4, 6, 7, 10, 11, 15, 17, 23, 26, 33, 38, 49, 56, 69, 80, 99, 114, 139, 160, 194, 224, 268, 310, 370, 426, 504, 582, 687, 790, 927, 1066, 1247, 1433, 1667, 1913, 2222, 2545, 2944, 3369, 3888, 4442, 5112, 5833, 6697, 7631, 8739
Offset: 0

Views

Author

Jason Kimberley, Feb 22 2011

Keywords

Comments

a(n) is also the number of partitions of n with each part at least 4 and at most n-1. The integer i corresponds to the i-cycle; addition of integers corresponds to disconnected union of cycles.

Crossrefs

2-regular graphs with girth at least 4: A185114 (connected), this sequence (disconnected), A008484 (not necessarily connected).
Disconnected k-regular simple graphs with girth at least 4: A185214 (any k), A185204 (triangle); specified degree k: A185224 (k=2), A185234 (k=3), A185244 (k=4), A185254 (k=5), A185264 (k=6), A185274 (k=7), A185284 (k=8), A185294 (k=9).
Disconnected 2-regular simple graphs with girth at least g [partitions of n with each part i being g <= i < n]: A165652 (g=3), this sequence (g=4), A185225 (g=5), A185226 (g=6), A185227 (g=7), A185228 (g=8), A185229 (g=9).

Programs

Formula

a(n) = A008484(n) - A185114(n).

A033483 Number of disconnected 4-valent (or quartic) graphs with n nodes.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 3, 8, 25, 88, 378, 2026, 13351, 104595, 930586, 9124662, 96699987, 1095469608, 13175272208, 167460699184, 2241578965849, 31510542635443, 464047929509794, 7143991172244290, 114749135506381940, 1919658575933845129, 33393712487076999918, 603152722419661386031
Offset: 0

Views

Author

Ronald C. Read

Keywords

References

  • R. C. Read and R. J. Wilson, An Atlas of Graphs, Oxford, 1998.

Crossrefs

4-regular simple graphs: A006820 (connected), this sequence (disconnected), A033301 (not necessarily connected). - Jason Kimberley, Jan 08 2011
Disconnected regular simple graphs: A068932 (any degree), A068933 (triangular array), specified degree k: A165652 (k=2), A165653 (k=3), this sequence (k=4), A165655 (k=5), A165656 (k=6), A165877 (k=7), A165878 (k=8), A185293 (k=9), A185203 (k=10), A185213 (k=11).
Disconnected 4-regular simple graphs with girth at least g: this sequence (g=3), A185244 (g=4), A185245 (g=5), A185246 (g=6).

Programs

Formula

a(n) = A033301(n) - A006820(n) = Euler_transformation(A006820) - A006820.
a(n) = A068933(n, 4). - Jason Kimberley, Sep 27 2009 and Jan 08 2011

Extensions

Terms a(16)-a(18) from Martin Fuller, Dec 04 2006
Terms a(19)-a(26) from Jason Kimberley, Sep 27 2009 and Dec 30 2010
Terms a(27)-a(33), due to the extension of A006820 by Andrew Howroyd, from Jason Kimberley, Mar 12 2020

A185214 Number of disconnected regular simple graphs on n vertices with girth at least 4.

Original entry on oeis.org

0, 0, 1, 1, 2, 1, 2, 1, 3, 2, 4, 3, 7, 5, 10, 8, 22, 12, 54, 20, 218, 62, 1436, 1731, 27810, 197981, 2613814, 33117962, 463707741, 6709514340, 102306352539, 1597440872801
Offset: 0

Views

Author

Jason Kimberley, Mar 26 2012

Keywords

Crossrefs

This sequence is the row sum sequence of A185204.
Regular graphs, of any degree, with girth at least 4: A186724 (connected), this sequence (disconnected), A185314 (not necessarily connected).
Disconnected k-regular simple graphs with girth at least 4: this sequence (any k), A185204 (triangle); specified degree k: A185224 (k=2), A185234 (k=3), A185244 (k=4), A185254 (k=5), A185264 (k=6), A185274 (k=7), A185284 (k=8), A185294 (k=9).

Extensions

a(31) corrected by the author, propagated from A185244, Jan 05 2013

A185204 Triangular array D(n,k) counting disconnected k-regular simple graphs on n vertices with girth at least 4.

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 2, 1, 0, 2, 1, 1, 4, 1, 1, 0, 4, 0, 1, 1, 6, 2, 1, 0, 7, 0, 1, 1, 10, 9, 1, 1, 0, 11, 0, 0, 1, 1, 15, 35, 2, 1, 0, 17, 0, 2, 1, 1, 23, 177, 15, 1, 1, 0, 26, 0, 35, 0, 1, 1, 33, 1153, 247, 1, 1, 0, 38, 0, 1692, 0, 1, 1, 49, 10341, 17409, 8, 1
Offset: 1

Views

Author

Jason Kimberley, Feb 22 2011

Keywords

Comments

For n >= 0 and 0 <= k <= A002265(n).

Examples

			0;
1;
1;
1, 1;
1, 0;
1, 1;
1, 0;
1, 1, 1;
1, 0, 1;
1, 1, 2;
1, 0, 2;
1, 1, 4, 1;
1, 0, 4, 0;
1, 1, 6, 2;
1, 0, 7, 0;
1, 1, 10, 9, 1;
1, 0, 11, 0, 0;
1, 1, 15, 35, 2;
1, 0, 17, 0, 2;
		

Crossrefs

Disconnected k-regular simple graphs with girth at least 4: A185214 (any k), this sequence (triangle); specified degree k: A185224 (k=2), A185234 (k=3), A185244 (k=4), A185254 (k=5), A185264 (k=6), A185274 (k=7), A185284 (k=8), A185294 (k=9).

Extensions

The b-file corrected and a-file expanded by the author, Jan 19 2013

A185234 Number of disconnected 3-regular simple graphs on 2n vertices with girth at least 4.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 2, 9, 35, 177, 1153, 10341, 120523, 1702432, 27507351, 492377298, 9600913017, 201990426697, 4555849947783
Offset: 0

Views

Author

Jason Kimberley, Feb 22 2011

Keywords

Crossrefs

Disconnected k-regular simple graphs with girth at least 4: A185214 (any k), A185204 (triangle); specified degree k: A185224 (k=2), this sequence (k=3), A185244 (k=4), A185254 (k=5), A185264 (k=6), A185274 (k=7), A185284 (k=8), A185294 (k=9).

A185254 Number of disconnected 5-regular simple graphs on 2n vertices with girth at least 4.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 8, 395, 407240, 1125431866, 3814677304834
Offset: 0

Views

Author

Jason Kimberley, Feb 22 and Nov 04 2011

Keywords

Crossrefs

5-regular simple graphs on 2n vertices with girth at least 4: A058275 (connected), this sequence (disconnected), A185354 (not necessarily connected).
Disconnected k-regular simple graphs with girth at least 4: A185214 (any k), A185204 (triangle); specified degree k: A185224 (k=2), A185234 (k=3), A185244 (k=4), this sequence (k=5), A185264 (k=6), A185274 (k=7), A185284 (k=8), A185294 (k=9).

A185264 Number of disconnected 6-regular simple graphs on n vertices with girth at least 4.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 10, 7, 277, 3742, 483330, 69827771, 14836620025
Offset: 0

Views

Author

Jason Kimberley, Feb 22 2011

Keywords

Crossrefs

6-regular simple graphs with girth at least 4: A058276 (connected), this sequence (disconnected), A185364 (not necessarily connected).
Disconnected k-regular simple graphs with girth at least 4: A185214 (any k), A185204 (triangle); specified degree k: A185224 (k=2), A185234 (k=3), A185244 (k=4), A185254 (k=5), this sequence (k=6), A185274 (k=7), A185284 (k=8), A185294 (k=9).

Formula

a(n)
= A185364(n) - A058276(n)
= Euler_transformation(A058276)(n) - A058276(n).

A185274 Number of disconnected 7-regular simple graphs on 2n vertices with girth at least 4.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 9, 749, 2888270
Offset: 0

Views

Author

Jason Kimberley, Feb 22 2011

Keywords

Crossrefs

Disconnected k-regular simple graphs with girth at least 4: A185214 (any k), A185204 (triangle); specified degree k: A185224 (k=2), A185234 (k=3), A185244 (k=4), A185254 (k=5), A185264 (k=6), this sequence (k=7), A185284 (k=8), A185294 (k=9).

A185284 Number of disconnected 8-regular simple graphs on n vertices with girth at least 4.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 14, 1
Offset: 0

Views

Author

Jason Kimberley, Feb 22 2011

Keywords

Crossrefs

Disconnected k-regular simple graphs with girth at least 4: A185214 (any k), A185204 (triangle); specified degree k: A185224 (k=2), A185234 (k=3), A185244 (k=4), A185254 (k=5), A185264 (k=6), A185274 (k=7), this sequence (k=8), A185294 (k=9).
Showing 1-10 of 17 results. Next