cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A014371 Number of trivalent connected simple graphs with 2*n nodes and girth at least 4.

Original entry on oeis.org

1, 0, 0, 1, 2, 6, 22, 110, 792, 7805, 97546, 1435720, 23780814, 432757568, 8542471494, 181492137812, 4127077143862
Offset: 0

Views

Author

Keywords

Comments

The null graph on 0 vertices is vacuously connected and 3-regular; since it is acyclic, it has infinite girth. - Jason Kimberley, Jan 29 2011

References

  • CRC Handbook of Combinatorial Designs, 1996, p. 647.

Crossrefs

From Jason Kimberley, Jun 28 2010 and Jan 29 2011: (Start)
3-regular simple graphs with girth at least 4: this sequence (connected), A185234 (disconnected), A185334 (not necessarily connected).
Connected k-regular simple graphs with girth at least 4: A186724 (any k), A186714 (triangle); specified degree k: A185114 (k=2), this sequence (k=3), A033886 (k=4), A058275 (k=5), A058276 (k=6), A181153 (k=7), A181154 (k=8), A181170 (k=9).
Connected 3-regular simple graphs with girth at least g: A185131 (triangle); chosen g: A002851 (g=3), this sequence (g=4), A014372 (g=5), A014374 (g=6), A014375 (g=7), A014376 (g=8).
Connected 3-regular simple graphs with girth exactly g: A198303 (triangle); chosen g: A006923 (g=3), A006924 (g=4), A006925 (g=5), A006926 (g=6), A006927 (g=7). (End)

Programs

  • Mathematica
    A[s_Integer] := With[{s6 = StringPadLeft[ToString[s], 6, "0"]}, Cases[ Import["https://oeis.org/A" <> s6 <> "/b" <> s6 <> ".txt", "Table"], {, }][[All, 2]]];
    A002851 = A@002851;
    A006923 = A@006923;
    a[n_] := A002851[[n + 1]] - A006923[[n + 1]];
    a /@ Range[0, 16] (* Jean-François Alcover, Jan 27 2020 *)

Extensions

Terms a(14) and a(15) appended, from running Meringer's GENREG for 4.2 and 93.2 processor days at U. Newcastle, by Jason Kimberley on Jun 28 2010
a(16), from House of Graphs, by Jan Goedgebeur et al., added by Jason Kimberley, Feb 15 2011

A185224 Number of disconnected 2-regular simple graphs on n vertices with girth at least 4.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 2, 4, 4, 6, 7, 10, 11, 15, 17, 23, 26, 33, 38, 49, 56, 69, 80, 99, 114, 139, 160, 194, 224, 268, 310, 370, 426, 504, 582, 687, 790, 927, 1066, 1247, 1433, 1667, 1913, 2222, 2545, 2944, 3369, 3888, 4442, 5112, 5833, 6697, 7631, 8739
Offset: 0

Views

Author

Jason Kimberley, Feb 22 2011

Keywords

Comments

a(n) is also the number of partitions of n with each part at least 4 and at most n-1. The integer i corresponds to the i-cycle; addition of integers corresponds to disconnected union of cycles.

Crossrefs

2-regular graphs with girth at least 4: A185114 (connected), this sequence (disconnected), A008484 (not necessarily connected).
Disconnected k-regular simple graphs with girth at least 4: A185214 (any k), A185204 (triangle); specified degree k: A185224 (k=2), A185234 (k=3), A185244 (k=4), A185254 (k=5), A185264 (k=6), A185274 (k=7), A185284 (k=8), A185294 (k=9).
Disconnected 2-regular simple graphs with girth at least g [partitions of n with each part i being g <= i < n]: A165652 (g=3), this sequence (g=4), A185225 (g=5), A185226 (g=6), A185227 (g=7), A185228 (g=8), A185229 (g=9).

Programs

Formula

a(n) = A008484(n) - A185114(n).

A185214 Number of disconnected regular simple graphs on n vertices with girth at least 4.

Original entry on oeis.org

0, 0, 1, 1, 2, 1, 2, 1, 3, 2, 4, 3, 7, 5, 10, 8, 22, 12, 54, 20, 218, 62, 1436, 1731, 27810, 197981, 2613814, 33117962, 463707741, 6709514340, 102306352539, 1597440872801
Offset: 0

Views

Author

Jason Kimberley, Mar 26 2012

Keywords

Crossrefs

This sequence is the row sum sequence of A185204.
Regular graphs, of any degree, with girth at least 4: A186724 (connected), this sequence (disconnected), A185314 (not necessarily connected).
Disconnected k-regular simple graphs with girth at least 4: this sequence (any k), A185204 (triangle); specified degree k: A185224 (k=2), A185234 (k=3), A185244 (k=4), A185254 (k=5), A185264 (k=6), A185274 (k=7), A185284 (k=8), A185294 (k=9).

Extensions

a(31) corrected by the author, propagated from A185244, Jan 05 2013

A185244 Number of disconnected 4-regular simple graphs on n vertices with girth at least 4.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 2, 2, 15, 35, 247, 1692, 17409, 197924, 2492824, 33117880, 461597957, 6709514218, 101153412903, 1597440868898
Offset: 0

Views

Author

Jason Kimberley, Feb 22 2011

Keywords

Crossrefs

4-regular simple graphs with girth at least 4: A033886 (connected), this sequence (disconnected), A185344 (not necessarily connected).
Disconnected 4-regular simple graphs with girth at least g: A033483 (g=3), this sequence (g=4), A185245 (g=5), A185246 (g=6).
Disconnected k-regular simple graphs with girth at least 4: A185214 (any k), A185204 (triangle); specified degree k: A185224 (k=2), A185234 (k=3), this sequence (k=4), A185254 (k=5), A185264 (k=6), A185274 (k=7), A185284 (k=8), A185294 (k=9).

Formula

a(n) = A185344(n) - A033886(n) = Euler_transformation(A033886)(n) - A033886(n).
a(n) = A185044(n) + A185245(n).

Extensions

a(31) appended by the author once A033886(23) was known, Nov 03 2011
a(31) corrected by the author, Jan 05 2013

A185204 Triangular array D(n,k) counting disconnected k-regular simple graphs on n vertices with girth at least 4.

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 2, 1, 0, 2, 1, 1, 4, 1, 1, 0, 4, 0, 1, 1, 6, 2, 1, 0, 7, 0, 1, 1, 10, 9, 1, 1, 0, 11, 0, 0, 1, 1, 15, 35, 2, 1, 0, 17, 0, 2, 1, 1, 23, 177, 15, 1, 1, 0, 26, 0, 35, 0, 1, 1, 33, 1153, 247, 1, 1, 0, 38, 0, 1692, 0, 1, 1, 49, 10341, 17409, 8, 1
Offset: 1

Views

Author

Jason Kimberley, Feb 22 2011

Keywords

Comments

For n >= 0 and 0 <= k <= A002265(n).

Examples

			0;
1;
1;
1, 1;
1, 0;
1, 1;
1, 0;
1, 1, 1;
1, 0, 1;
1, 1, 2;
1, 0, 2;
1, 1, 4, 1;
1, 0, 4, 0;
1, 1, 6, 2;
1, 0, 7, 0;
1, 1, 10, 9, 1;
1, 0, 11, 0, 0;
1, 1, 15, 35, 2;
1, 0, 17, 0, 2;
		

Crossrefs

Disconnected k-regular simple graphs with girth at least 4: A185214 (any k), this sequence (triangle); specified degree k: A185224 (k=2), A185234 (k=3), A185244 (k=4), A185254 (k=5), A185264 (k=6), A185274 (k=7), A185284 (k=8), A185294 (k=9).

Extensions

The b-file corrected and a-file expanded by the author, Jan 19 2013

A185334 Number of not necessarily connected 3-regular simple graphs on 2n vertices with girth at least 4.

Original entry on oeis.org

1, 0, 0, 1, 2, 6, 23, 112, 801, 7840, 97723, 1436873, 23791155, 432878091, 8544173926, 181519645163, 4127569521160
Offset: 0

Views

Author

Jason Kimberley, Feb 15 2011

Keywords

Comments

The null graph on 0 vertices is vacuously 3-regular; since it is acyclic, it has infinite girth.

Crossrefs

3-regular simple graphs with girth at least 4: A014371 (connected), A185234 (disconnected), this sequence (not necessarily connected).
Not necessarily connected k-regular simple graphs with girth at least 4: A185314 (any k), A185304 (triangle); specified degree k: A008484 (k=2), this sequence (k=3), A185344 (k=4), A185354 (k=5), A185364 (k=6).
Not necessarily connected 3-regular simple graphs with girth *at least* g: A005638 (g=3), this sequence (g=4), A185335 (g=5), A185336 (g=6).
Not necessarily connected 3-regular simple graphs with girth *exactly* g: A185133 (g=3), A185134 (g=4), A185135 (g=5), A185136 (g=6).

Programs

Formula

Euler transformation of A014371.

A185254 Number of disconnected 5-regular simple graphs on 2n vertices with girth at least 4.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 8, 395, 407240, 1125431866, 3814677304834
Offset: 0

Views

Author

Jason Kimberley, Feb 22 and Nov 04 2011

Keywords

Crossrefs

5-regular simple graphs on 2n vertices with girth at least 4: A058275 (connected), this sequence (disconnected), A185354 (not necessarily connected).
Disconnected k-regular simple graphs with girth at least 4: A185214 (any k), A185204 (triangle); specified degree k: A185224 (k=2), A185234 (k=3), A185244 (k=4), this sequence (k=5), A185264 (k=6), A185274 (k=7), A185284 (k=8), A185294 (k=9).

A185264 Number of disconnected 6-regular simple graphs on n vertices with girth at least 4.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 10, 7, 277, 3742, 483330, 69827771, 14836620025
Offset: 0

Views

Author

Jason Kimberley, Feb 22 2011

Keywords

Crossrefs

6-regular simple graphs with girth at least 4: A058276 (connected), this sequence (disconnected), A185364 (not necessarily connected).
Disconnected k-regular simple graphs with girth at least 4: A185214 (any k), A185204 (triangle); specified degree k: A185224 (k=2), A185234 (k=3), A185244 (k=4), A185254 (k=5), this sequence (k=6), A185274 (k=7), A185284 (k=8), A185294 (k=9).

Formula

a(n)
= A185364(n) - A058276(n)
= Euler_transformation(A058276)(n) - A058276(n).

A185033 Number of disconnected 3-regular simple graphs on 2n vertices with girth exactly 3.

Original entry on oeis.org

0, 0, 0, 0, 1, 2, 8, 29, 138, 774, 5678, 53324, 622716, 8604351, 135344959, 2363662004, 45134533117, 933058713014, 20735549517852, 492653820710746
Offset: 0

Views

Author

Jason Kimberley, Feb 29 2012

Keywords

Crossrefs

Disconnected k-regular simple graphs with girth exactly 3: A210713 (any k), A210703 (triangle); for fixed k: this sequence (k=3), A185043 (k=4), A185053 (k=5), A185063 (k=6).
Disconnected 3-regular simple graphs with girth exactly g: this sequence (g=3), A185034 (g=4), A185035 (g=5), A185036 (g=6), A185037 (g=7).

Formula

a(n) = A165653(n) - A185234(n).

A185274 Number of disconnected 7-regular simple graphs on 2n vertices with girth at least 4.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 9, 749, 2888270
Offset: 0

Views

Author

Jason Kimberley, Feb 22 2011

Keywords

Crossrefs

Disconnected k-regular simple graphs with girth at least 4: A185214 (any k), A185204 (triangle); specified degree k: A185224 (k=2), A185234 (k=3), A185244 (k=4), A185254 (k=5), A185264 (k=6), this sequence (k=7), A185284 (k=8), A185294 (k=9).
Showing 1-10 of 13 results. Next