cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A185329 Number of partitions of n with parts >= 9.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 7, 8, 9, 11, 12, 14, 16, 18, 20, 24, 26, 30, 34, 39, 43, 50, 55, 63, 71, 80, 89, 102, 113, 128, 143, 161, 179, 203, 225, 253, 282, 316, 351, 395, 437, 489, 544, 607, 673, 752, 832, 927, 1028, 1143
Offset: 0

Views

Author

Jason Kimberley, Feb 01 2012

Keywords

Comments

a(n) is also the number of not necessarily connected 2-regular graphs on n-vertices with girth at least 9 (all such graphs are simple). The integer i corresponds to the i-cycle; addition of integers corresponds to disconnected union of cycles.
By removing a single part of size 9, an A026802 partition of n becomes an A185329 partition of n - 9. Hence this sequence is essentially the same as A026802.
In general, if g>=1 and g.f. = Product_{m>=g} 1/(1-x^m), then a(n,g) ~ Pi^(g-1) * (g-1)! * exp(Pi*sqrt(2*n/3)) / (2^((g+3)/2) * 3^(g/2) * n^((g+1)/2)) ~ p(n) * Pi^(g-1) * (g-1)! / (6*n)^((g-1)/2), where p(n) is the partition function A000041(n). - Vaclav Kotesovec, Jun 02 2018

Crossrefs

Not necessarily connected 2-regular graphs with girth at least g [partitions into parts >= g]: A026807 (triangle); chosen g: A000041 (g=1 -- multigraphs with loops allowed), A002865 (g=2 -- multigraphs with loops forbidden), A008483 (g=3), A008484 (g=4), A185325(g=5), A185326 (g=6), A185327 (g=7), A185328 (g=8), this sequence (g=9).
Not necessarily connected 2-regular graphs with girth exactly g [partitions with smallest part g]: A026794 (triangle); chosen g: A002865 (g=2), A026796 (g=3), A026797 (g=4), A026798 (g=5), A026799 (g=6), A026800(g=7), A026801 (g=8), A026802 (g=9), A026803 (g=10).

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 70); Coefficients(R!( 1/(&*[1-x^(m+9): m in [0..80]]) )); // G. C. Greubel, Nov 03 2019
    
  • Maple
    seq(coeff(series(1/mul(1-x^(m+9), m = 0..80), x, n+1), x, n), n = 0..70); # G. C. Greubel, Nov 03 2019
  • Mathematica
    CoefficientList[Series[x^9/QPochhammer[x^9, x], {x,0,75}], x] (* G. C. Greubel, Nov 03 2019 *)
  • PARI
    my(x='x+O('x^70)); Vec(1/prod(m=0,80, 1-x^(m+9))) \\ G. C. Greubel, Nov 03 2019
    
  • Sage
    def A185329_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( 1/product((1-x^(m+9)) for m in (0..80)) ).list()
    A185329_list(70) # G. C. Greubel, Nov 03 2019

Formula

G.f.: Product_{m>=9} 1/(1-x^m).
a(n) = p(n) - p(n-1) - p(n-2) + p(n-5) + p(n-7) + p(n-9) - p(n-11) - 2*p(n-12) - p(n-13) - p(n-15) + p(n-16) + p(n-17) + 2*p(n-18) + p(n-19) + p(n-20) - p(n-21) - p(n-23) - 2*p(n-24) - p(n-25) + p(n-27) + p(n-29) + p(n-31) - p(n-34) - p(n-35) + p(n-36) where p(n)=A000041(n). - Shanzhen Gao
This sequence is the Euler transformation of A185119.
a(n) ~ exp(Pi*sqrt(2*n/3)) * 70*Pi^8 / (9*sqrt(3)*n^5). - Vaclav Kotesovec, Jun 02 2018
G.f.: Sum_{k>=0} x^(9*k) / Product_{j=1..k} (1 - x^j). - Ilya Gutkovskiy, Nov 28 2020
G.f.: 1 + Sum_{n >= 1} x^(n+8)/Product_{k = 0..n-1} (1 - x^(k+9)). - Peter Bala, Dec 01 2024