A185384 A binomial transform of Fibonacci numbers.
1, 2, 1, 5, 6, 2, 13, 24, 15, 3, 34, 84, 78, 32, 5, 89, 275, 340, 210, 65, 8, 233, 864, 1335, 1100, 510, 126, 13, 610, 2639, 4893, 5040, 3115, 1155, 238, 21, 1597, 7896, 17080, 21112, 16310, 8064, 2492, 440, 34, 4181, 23256, 57492, 82908, 76860, 47502, 19572, 5184, 801, 55
Offset: 0
Examples
From _Philippe Deléham_, Mar 13 2012: (Start) (1, 1, 1, 0, 0, 0, ...) DELTA (0, 1, 1, -1, 0, 0, ...) begins: 1; 1, 0; 2, 1, 0; 5, 6, 2, 0; 13, 24, 15, 3, 0; 34, 84, 78, 32, 5, 0; 89, 275, 340, 210, 65, 8, 0; 233, 864, 1335, 1100, 510, 126, 13, 0; ... (End)
Links
- G. C. Greubel, Table of n, a(n) for the first 100 rows, flattened
Programs
-
Mathematica
Flatten[Table[Sum[Binomial[n,i]Binomial[i,k]Fibonacci[i+1],{i,k,n}],{n,0,20},{k,0,n}]] CoefficientList[Series[CoefficientList[Series[(1 - x)/(1 - 3*x + x^2 - x*y - x^2*y - x^2*y^2), {x, 0, 10}], x], {y, 0, 10}], y] // Flatten (* G. C. Greubel, Jun 28 2017 *)
-
Maxima
create_list(binomial(n,k)*fib(2*n-k+1),n,0,20,k,0,n);
-
PARI
for(n=0,10, for(k=0,n, print1(sum(i=k,n, binomial(n,i) * binomial(i,k) * fibonacci(i+1)), ", "))) \\ G. C. Greubel, Jun 28 2017
Formula
a(n,k) = Sum_{i=k..n} binomial(n,i)*binomial(i,k)*F(i+1).
a(n,k) = binomial(n,i) * Sum_{i=k..n} binomial(n-k,n-i)*F(i+1).
Explicit form: a(n,k) = binomial(n,k)*F(2*n-k+1).
G.f.: (1-x)/(1-3*x+x^2-x*y-x^2*y-x^2*y^2).
Recurrence: a(n+2,k+2) = 3*a(n+1,k+2) + a(n+1,k+1) - a(n,k+2) + a(n,k+1) + a(n,k).
T(n,k) = A122070(n,n-k). - Philippe Deléham, Mar 13 2012
Comments