A208588
Row square-sums of triangle A185384.
Original entry on oeis.org
1, 5, 65, 979, 15345, 247535, 4069155, 67773805, 1139789185, 19311870095, 329149434263, 5637030686105, 96925730626035, 1672193347218577, 28932082285914005, 501821453320612915, 8722842168045249345, 151912536408383664095, 2650102280875677625415
Offset: 0
-
Table[Sum[Binomial[n,k]^2Fibonacci[2n-k+1]^2,{k,0,n}],{n,0,20}]
-
makelist(sum(binomial(n,k)^2*fib(2*n-k+1)^2,k,0,n),n,0,20);
A208473
Central coefficients of triangle A185384.
Original entry on oeis.org
1, 6, 78, 1100, 16310, 248724, 3863244, 60784152, 965571750, 15451970820, 248731275364, 4022998982184, 65326505787452, 1064336612493000, 17390322931354200, 284844148339840560, 4675649304522319110, 76895312195988615780
Offset: 0
-
Table[Binomial[2n,n]Fibonacci[3n+1],{n,0,100}]
-
makelist(binomial(2*n,n)*fib(3*n+1),n,0,17);
Original entry on oeis.org
1, 2, 6, 19, 60, 188, 589, 1846, 5786, 18135, 56840, 178152, 558377, 1750106, 5485310, 17192459, 53885860, 168892996, 529356757, 1659148590, 5200224626, 16298923631, 51085276240, 160115201936, 501844754065, 1572918462066, 4929955864374, 15451827549123
Offset: 0
-
Table[Sum[Binomial[n-k,k]Fibonacci[2n-3k+1],{k,0,Floor[n/2]}],{n,0,100}]
-
makelist(sum(binomial(n-k,k)*fib(2*n-3*k+1),k,0,floor(n/2)),n,0,27);
A033887
a(n) = Fibonacci(3*n + 1).
Original entry on oeis.org
1, 3, 13, 55, 233, 987, 4181, 17711, 75025, 317811, 1346269, 5702887, 24157817, 102334155, 433494437, 1836311903, 7778742049, 32951280099, 139583862445, 591286729879, 2504730781961, 10610209857723, 44945570212853, 190392490709135, 806515533049393, 3416454622906707
Offset: 0
a(5) = Fibonacci(3*5 + 1) = Fibonacci(16) = 987. - _Indranil Ghosh_, Feb 04 2017
- Indranil Ghosh, Table of n, a(n) for n = 0..1592
- Mohammad K. Azarian, Fibonacci Identities as Binomial Sums, International Journal of Contemporary Mathematical Sciences, 7(38) (2012), 1871-1876.
- Paul Barry and A. Hennessy, The Euler-Seidel Matrix, Hankel Matrices and Moment Sequences, J. Int. Seq. 13 (2010), #10.8.2, Example 13.
- Gary Detlefs and Wolfdieter Lang, Improved Formula for the Multi-Section of the Linear Three-Term Recurrence Sequence, arXiv:2304.12937 [math.CO], 2023.
- I. M. Gessel and Ji Li, Compositions and Fibonacci identities, J. Int. Seq. 16 (2013), #13.4.5.
- Edyta Hetmaniok, Bożena Piątek, and Roman Wituła, Binomials Transformation Formulae of Scaled Fibonacci Numbers, Open Mathematics, 15(1) (2017), 477-485.
- Tanya Khovanova, Recursive Sequences.
- Roman Witula, Binomials transformation formulae of scaled Lucas numbers, Demonstratio Mathematica, 46(1) (2013), 15-27.
- Roman Witula and Damian Slota, delta-Fibonacci numbers, Appl. Anal. Discr. Math 3 (2009), 310-329, MR2555042.
- Index entries for linear recurrences with constant coefficients, signature (4,1).
A181154
Number of connected 8-regular simple graphs on n vertices with girth at least 4.
Original entry on oeis.org
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 13, 1
Offset: 0
Jason Kimberley, week to Jan 31 2011
The a( 0)=1 null graph is vacuously 8-regular and connected; since it is acyclic then it has infinite girth.
The a(16)=1 graph is the complete bipartite graph K_{8,8}.
The a(21)=1 graph has girth 4, automorphism group of order 829440, and the following adjacency lists:
01 : 02 03 04 05 06 07 08 09
02 : 01 10 11 12 13 14 15 16
03 : 01 10 11 12 13 14 15 16
04 : 01 10 11 12 13 14 15 16
05 : 01 10 11 12 13 14 15 16
06 : 01 10 11 12 17 18 19 20
07 : 01 10 11 13 17 18 19 20
08 : 01 10 12 13 17 18 19 20
09 : 01 11 12 13 17 18 19 20
10 : 02 03 04 05 06 07 08 21
11 : 02 03 04 05 06 07 09 21
12 : 02 03 04 05 06 08 09 21
13 : 02 03 04 05 07 08 09 21
14 : 02 03 04 05 17 18 19 20
15 : 02 03 04 05 17 18 19 20
16 : 02 03 04 05 17 18 19 20
17 : 06 07 08 09 14 15 16 21
18 : 06 07 08 09 14 15 16 21
19 : 06 07 08 09 14 15 16 21
20 : 06 07 08 09 14 15 16 21
21 : 10 11 12 13 17 18 19 20
- M. Meringer, Fast Generation of Regular Graphs and Construction of Cages. Journal of Graph Theory, 30 (1999), 137-146.
8-regular simple graphs with girth at least 4: this sequence (connected),
A185284 (disconnected),
A185384 (not necessarily connected).
Connected 8-regular simple graphs with girth at least g:
A184981 (triangle); chosen g:
A014378 (g=3), this sequence (g=4).
Connected 8-regular simple graphs with girth exactly g:
A184980 (triangle); chosen g:
A184983 (g=3).
A122070
Triangle given by T(n,k) = Fibonacci(n+k+1)*binomial(n,k) for 0<=k<=n.
Original entry on oeis.org
1, 1, 2, 2, 6, 5, 3, 15, 24, 13, 5, 32, 78, 84, 34, 8, 65, 210, 340, 275, 89, 13, 126, 510, 1100, 1335, 864, 233, 21, 238, 1155, 3115, 5040, 4893, 2639, 610, 34, 440, 2492, 8064, 16310, 21112, 17080, 7896, 1597, 55, 801, 5184, 19572, 47502, 76860, 82908, 57492, 23256, 4181
Offset: 0
Triangle begins:
1;
1, 2;
2, 6, 5;
3, 15, 24, 13;
5, 32, 78, 84, 34;
8, 65, 210, 340, 275, 89;
13, 126, 510, 1100, 1335, 864, 233;
(0, 1, 1, -1, 0, 0, ...) DELTA (1, 1, 1, 0, 0, ...) begins :
1;
0, 1;
0, 1, 2;
0, 2, 6, 5;
0, 3, 15, 24, 13;
0, 5, 32, 78, 84, 34;
0, 8, 65, 210, 340, 275, 89;
0, 13, 126, 510, 1100, 1335, 864, 233;
-
Flat(List([0..10], n-> List([0..n], k-> Binomial(n,k)*Fibonacci(n+ k+1) ))); # G. C. Greubel, Oct 02 2019
-
[Binomial(n,k)*Fibonacci(n+k+1): k in [0..n], n in [0..10]]; // G. C. Greubel, Oct 02 2019
-
with(combinat): seq(seq(binomial(n,k)*fibonacci(n+k+1), k=0..n), n=0..10); # G. C. Greubel, Oct 02 2019
-
Table[Fibonacci[n+k+1]*Binomial[n,k], {n,0,10}, {k,0,n}]//Flatten (* G. C. Greubel, Oct 02 2019 *)
-
T(n,k) = binomial(n,k)*fibonacci(n+k+1);
for(n=0,10, for(k=0,n, print1(T(n,k), ", "))) \\ G. C. Greubel, Oct 02 2019
-
[[binomial(n,k)*fibonacci(n+k+1) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Oct 02 2019
Showing 1-6 of 6 results.
Comments