A185438 a(n) = 8*n^2 - 2*n + 1.
1, 7, 29, 67, 121, 191, 277, 379, 497, 631, 781, 947, 1129, 1327, 1541, 1771, 2017, 2279, 2557, 2851, 3161, 3487, 3829, 4187, 4561, 4951, 5357, 5779, 6217, 6671, 7141, 7627, 8129, 8647, 9181, 9731, 10297, 10879, 11477, 12091, 12721, 13367, 14029, 14707, 15401, 16111, 16837, 17579
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Crossrefs
Programs
-
Magma
[1-2*n+8*n^2: n in [0..50]]; // Vincenzo Librandi, Feb 03 2011
-
Mathematica
Table[1 - 2n + 8n^2, {n, 0, 39}] (* Alonso del Arte, Feb 03 2011 *) CoefficientList[Series[(-1 - 4 x - 11 x^2)/(x - 1)^3, {x, 0, 47}], x] (* Michael De Vlieger, Aug 01 2016 *)
-
PARI
a(n)=8*n^2-2*n+1 \\ Charles R Greathouse IV, Jun 17 2017
Formula
a(n) = a(n-1) + 16*n - 10 (n > 0).
a(n) = 2*a(n-1) - a(n-2) + 16 (n > 1).
a(n) = 3*(n-1) - 3*a(n-2) + a(n-3) (n > 2).
G.f.: (-1 - 4*x - 11*x^2)/(x-1)^3. - R. J. Mathar, Feb 03 2011
a(n) = A014635(n) + 1. - Bruno Berselli, Apr 09 2011
E.g.f.: exp(x)*(1 + 6*x + 8*x^2). - Elmo R. Oliveira, Nov 17 2024
Comments