A185633 For odd n, a(n) = 2; for even n, a(n) = denominator of Bernoulli(n)/n; The number 2 alternating with the elements of A006953.
2, 12, 2, 120, 2, 252, 2, 240, 2, 132, 2, 32760, 2, 12, 2, 8160, 2, 14364, 2, 6600, 2, 276, 2, 65520, 2, 12, 2, 3480, 2, 85932, 2, 16320, 2, 12, 2, 69090840, 2, 12, 2, 541200, 2, 75852, 2, 2760, 2, 564, 2, 2227680, 2, 132, 2, 6360
Offset: 1
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 1..16384
Crossrefs
Programs
-
Maple
A185633 := proc(n) A053657(n+1)/A053657(n) ; end proc: # R. J. Mathar, Dec 19 2012
-
Mathematica
max = 52; s = Expand[Normal[Series[(-Log[1-x]/x)^z, {x, 0, max}]]]; a[n_, k_] := Denominator[Coefficient[s, x^n*z^k]]; A053657 = Prepend[LCM @@@ Table[a[n, k], {n, max}, {k, n}], 1]; a[n_] := A053657[[n+1]]/A053657[[n]]; Table[a[n], {n, 1, max}] (* Jean-François Alcover, Dec 20 2012 *)
-
PARI
A185633(n) = if(n%2,2,denominator(bernfrac(n)/(n))); \\ Antti Karttunen, Dec 03 2018
-
PARI
A185633(n) = { my(m=1); fordiv(n, d, if(isprime(1+d), m *= (1+d)^(1+valuation(n,1+d)))); (m); }; \\ Antti Karttunen, Dec 03 2018
Formula
a(2*n) = 2*A036283(n).
From Antti Karttunen, Dec 03 2018: (Start)
a(n) = Product_{d|n} [(1+d)^(1+A286561(n,1+d))]^A010051(1+d) - after Peter J. Cameron's Mar 25 2002 comment in A006863.
(End)
Extensions
Name edited by Antti Karttunen, Dec 03 2018
Comments