A185895 Exponential generating function is (1-x^1/1!)(1-x^2/2!)(1-x^3/3!)....
1, -1, -1, 2, 3, 14, -40, -43, -357, -1762, 8004, 13067, 78540, 492439, 3932305, -26867293, -44643557, -363632466, -1729625764, -15939972937, -145669871232, 1488599170613, 3515325612655, 26765194180353, 151925998229148
Offset: 0
Keywords
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..300
Programs
-
PARI
{a(n) = if( n<0, 0, n! * polcoeff( prod( k=1, n, 1 - x^k / k!, 1 + x * O(x^n)), n))}
-
PARI
{a(n)=if(n<0,0,if(n==0,1,sum(k=1,n,(n-1)!/(n-k)!*a(n-k)*sumdiv(k,d,-d*d!^(-k/d)))))} [Hanna]
Formula
E.g.f.: Product_{k>0} (1 - x^k/k!).
a(n) = Sum_{k=1..n} (n-1)!/(n-k)!*b(k)*a(n-k), where b(k) = Sum_{d divides k} -d*d!^(-k/d) and a(0) = 1 [cf. Vladeta Jovovic's formula in A007837].
E.g.f.: exp(-Sum_{k>=1} Sum_{j>=1} x^(j*k)/(k*(j!)^k)). - Ilya Gutkovskiy, Jun 18 2018
Comments