cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A007837 Number of partitions of n-set with distinct block sizes.

Original entry on oeis.org

1, 1, 1, 4, 5, 16, 82, 169, 541, 2272, 17966, 44419, 201830, 802751, 4897453, 52275409, 166257661, 840363296, 4321172134, 24358246735, 183351656650, 2762567051857, 10112898715063, 62269802986835, 343651382271526, 2352104168848091, 15649414071734847
Offset: 0

Views

Author

Keywords

Comments

Conjecture: the Gauss congruences a(n*p^k) == a(n*p^(k-1)) (mod p^k) hold for all primes p and positive integers n and k. Cf. A185895. - Peter Bala, Mar 17 2022

Examples

			From _Gus Wiseman_, Jul 13 2019: (Start)
The a(1) = 1 through a(5) = 16 set partitions with distinct block sizes:
  {{1}}  {{1,2}}  {{1,2,3}}    {{1,2,3,4}}    {{1,2,3,4,5}}
                  {{1},{2,3}}  {{1},{2,3,4}}  {{1},{2,3,4,5}}
                  {{1,2},{3}}  {{1,2,3},{4}}  {{1,2},{3,4,5}}
                  {{1,3},{2}}  {{1,2,4},{3}}  {{1,2,3},{4,5}}
                               {{1,3,4},{2}}  {{1,2,3,4},{5}}
                                              {{1,2,3,5},{4}}
                                              {{1,2,4},{3,5}}
                                              {{1,2,4,5},{3}}
                                              {{1,2,5},{3,4}}
                                              {{1,3},{2,4,5}}
                                              {{1,3,4},{2,5}}
                                              {{1,3,4,5},{2}}
                                              {{1,3,5},{2,4}}
                                              {{1,4},{2,3,5}}
                                              {{1,4,5},{2,3}}
                                              {{1,5},{2,3,4}}
(End)
		

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=0, 1, add(add((-d)*(-d!)^(-k/d),
           d=numtheory[divisors](k))*(n-1)!/(n-k)!*a(n-k), k=1..n))
        end:
    seq(a(n), n=0..30);  # Alois P. Heinz, Sep 06 2008
    # second Maple program:
    A007837 := proc(n) option remember; local k; `if`(n = 0, 1,
    add(binomial(n-1, k-1) * A182927(k) * A007837(n-k), k = 1..n)) end:
    seq(A007837(i),i=0..24); # Peter Luschny, Apr 25 2011
  • Mathematica
    nn=20;p=Product[1+x^i/i!,{i,1,nn}];Drop[Range[0,nn]!CoefficientList[ Series[p,{x,0,nn}],x],1]  (* Geoffrey Critzer, Sep 22 2012 *)
    a[0]=1; a[n_] := a[n] = Sum[(n-1)!/(n-k)!*DivisorSum[k, -#*(-#!)^(-k/#)&]* a[n-k], {k, 1, n}]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Nov 23 2015, after Vladeta Jovovic *)
  • PARI
    {my(n=20); Vec(serlaplace(prod(k=1, n, (1+x^k/k!) + O(x*x^n))))} \\ Andrew Howroyd, Dec 21 2017

Formula

E.g.f.: Product_{m >= 1} (1+x^m/m!).
a(n) = Sum_{k=1..n} (n-1)!/(n-k)!*b(k)*a(n-k), where b(k) = Sum_{d divides k} (-d)*(-d!)^(-k/d) and a(0) = 1. - Vladeta Jovovic, Oct 13 2002
E.g.f.: exp(Sum_{k>=1} Sum_{j>=1} (-1)^(k+1)*x^(j*k)/(k*(j!)^k)). - Ilya Gutkovskiy, Jun 18 2018

Extensions

More terms from Christian G. Bower
a(0)=1 prepended by Alois P. Heinz, Aug 29 2015

A345762 E.g.f.: Product_{k>=1} (1 - x^k)^(1/k!).

Original entry on oeis.org

1, -1, -1, 2, 0, 29, -135, 727, -1967, -6074, 94510, 1548051, -41361089, 408842095, 213929807, -41951737904, 130060640466, 10569226878107, -229371598130229, 3327344803563111, -31418096993670379, -383829978086171112, 17799865170898698140, 220582224147105677385
Offset: 0

Views

Author

Seiichi Manyama, Jun 26 2021

Keywords

Crossrefs

Programs

  • PARI
    my(N=40, x='x+O('x^N)); Vec(serlaplace(prod(k=1, N, (1-x^k)^(1/k!))))
    
  • PARI
    my(N=40, x='x+O('x^N)); Vec(serlaplace(exp(-sum(k=1, N, (exp(x^k)-1)/k))))
    
  • PARI
    my(N=40, x='x+O('x^N)); Vec(serlaplace(exp(-sum(k=1, N, sumdiv(k, d, 1/(d-1)!)*x^k/k))))
    
  • PARI
    a(n) = if(n==0, 1, -(n-1)!*sum(k=1, n, sumdiv(k, d, 1/(d-1)!)*a(n-k)/(n-k)!));

Formula

E.g.f.: exp( -Sum_{k>=1} (exp(x^k) - 1)/k ).
E.g.f.: exp( -Sum_{k>=1} A087906(k)*x^k/k! ).
a(n) = -(n-1)! * Sum_{k=1..n} (Sum_{d|k} 1/(d-1)!) * a(n-k)/(n-k)! for n > 0.

A294495 E.g.f.: Product_{k>0} (1-x^k/k!)^k.

Original entry on oeis.org

1, -1, -2, 3, 14, 45, -156, -1225, -3396, -105, 226760, 1175229, 4084200, -35683219, -585896962, -3512021955, -14398868176, 198247498911, 3131185307832, 29821940715413, 122481857683680, -1187008881417051, -31616420134183522, -419944298964036771
Offset: 0

Views

Author

Seiichi Manyama, Nov 01 2017

Keywords

Crossrefs

Programs

  • PARI
    N=66; x='x+O('x^N); Vec(serlaplace(prod(k=1, N, (1-x^k/k!)^k)))

A319218 Expansion of e.g.f. Product_{k>=1} (1 - x^k/(k - 1)!).

Original entry on oeis.org

1, -1, -2, 3, 8, 75, -216, -175, -3816, -36225, 189800, 325149, 2375460, 25547951, 386162126, -3290670825, -6316583056, -59290501809, -310987223208, -4836373835707, -86500419684420, 1119358992256239, 3043733432729198, 26408738842522959, 169835931388147464
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 13 2018

Keywords

Crossrefs

Programs

  • Maple
    seq(n!*coeff(series(mul((1 - x^k/(k - 1)!),k=1..100),x=0,25),x,n),n=0..24); # Paolo P. Lava, Jan 09 2019
  • Mathematica
    nmax = 24; CoefficientList[Series[Product[(1 - x^k/(k - 1)!), {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]!
    nmax = 24; CoefficientList[Series[Exp[-Sum[Sum[x^(j k)/(k (j - 1)!^k), {j, 1, nmax}], {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax]!
    a[n_] := a[n] = If[n == 0, 1, (n - 1)! Sum[Sum[-d (d - 1)!^(-k/d), {d, Divisors[k]}] a[n - k]/(n - k)!, {k, 1, n}]]; Table[a[n], {n, 0, 24}]

Formula

E.g.f.: exp(-Sum_{k>=1} Sum_{j>=1} x^(j*k)/(k*((j - 1)!)^k)).

A346314 Sum_{n>=0} a(n) * x^n / (n!)^2 = Product_{n>=1} (1 - x^n / (n!)^2).

Original entry on oeis.org

1, -1, -1, 8, 15, 124, -3340, -9311, -102641, -1880812, 150047424, 692058289, 8916106452, 167039809897, 7435628931289, -1381243302601067, -9407162843960561, -165954439670564988, -3103870029424074136, -123659189880256295879, -10671656695397289496160
Offset: 0

Views

Author

Ilya Gutkovskiy, Jul 13 2021

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 20; CoefficientList[Series[Product[(1 - x^k/(k!)^2), {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]!^2
    a[0] = 1; a[n_] := a[n] = -(1/n) Sum[(Binomial[n, k] k!)^2 k Sum[1/(d ((k/d)!)^(2 d)), {d, Divisors[k]}] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 20}]

Formula

a(0) = 1; a(n) = -(1/n) * Sum_{k=1..n} (binomial(n,k) * k!)^2 * k * ( Sum_{d|k} 1 / (d * ((k/d)!)^(2*d)) ) * a(n-k).

A371551 Expansion of e.g.f. Product_{k>=1} (1 - x^k/k!)^2.

Original entry on oeis.org

1, -2, 0, 10, -4, -42, -258, 306, 5980, 3142, 61730, -794334, -3299074, -8459830, 40220390, 1550926110, 1631691740, 43693916390, -125593997262, -4079362135854, -32054212967294, -33715330874838, -600410923342450, 9383532800084966, 329821022627776798
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 27 2024

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 24; CoefficientList[Series[Product[(1 - x^k/k!)^2, {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]!

A371552 Expansion of e.g.f. Product_{k>=1} (1 - x^k/k!)^3.

Original entry on oeis.org

1, -3, 3, 18, -57, -138, 246, 4281, 13383, -156906, -450822, -957729, 23375886, 289894875, -179027895, -3403581357, -174968380137, -419588974650, 4439383168602, 50400469832883, 1027067921064738, 428364930324489, -18456487538087145, -1019962180000311267
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 27 2024

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 23; CoefficientList[Series[Product[(1 - x^k/k!)^3, {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]!

A345759 E.g.f.: Product_{k>=1} (1 - (exp(x) - 1)^k / k!).

Original entry on oeis.org

1, -1, -2, -2, 7, 78, 513, 2665, 9406, -13902, -789143, -11806456, -140040408, -1463842226, -13377115923, -95264642343, -198034245627, 11021440199748, 322964047973519, 6617250866231379, 118668721540190350, 1965786734149801960, 30348547043773563767
Offset: 0

Views

Author

Seiichi Manyama, Jun 26 2021

Keywords

Comments

Stirling transform of A185895.

Crossrefs

Programs

  • PARI
    my(N=40, x='x+O('x^N)); Vec(serlaplace(prod(k=1, N, 1-(exp(x)-1)^k/k!)))

Formula

a(n) = Sum_{k=0..n} Stirling2(n,k) * A185895(k).
Showing 1-8 of 8 results.