cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A185995 a(n) = 2^(binomial(2*n+2,3)/4).

Original entry on oeis.org

1, 2, 32, 16384, 1073741824, 36028797018963968, 2475880078570760549798248448, 1393796574908163946345982392040522594123776, 25711008708143844408671393477458601640355247900524685364822016
Offset: 0

Views

Author

Paul Barry, Feb 08 2011

Keywords

Comments

Hankel transform of A185994.

Programs

  • Mathematica
    Table[2^(1/6*n*(2*n^2 + 3*n + 1)), {n, 0, 25}] (* G. C. Greubel, Feb 20 2017 *)
    Table[2^(Binomial[2n+2,3]/4),{n,0,10}] (* Harvey P. Dale, Sep 13 2024 *)
  • PARI
    for(n=0,15, print1(2^(1/6*n*(2*n^2 + 3*n + 1)), ", ")) \\ G. C. Greubel, Feb 20 2017

Formula

a(n) = Product_{k=0..n} (2^(2k+1))^(n-k).
a(n) = 2^A000330(n).
a(n) = 2^(1/6*n*(2*n^2+3*n+1)). - Alexander R. Povolotsky, Feb 13 2011