A186029 a(n) = n*(7*n+3)/2.
0, 5, 17, 36, 62, 95, 135, 182, 236, 297, 365, 440, 522, 611, 707, 810, 920, 1037, 1161, 1292, 1430, 1575, 1727, 1886, 2052, 2225, 2405, 2592, 2786, 2987, 3195, 3410, 3632, 3861, 4097, 4340, 4590, 4847, 5111, 5382, 5660, 5945, 6237, 6536, 6842, 7155, 7475
Offset: 0
Examples
From _Ilya Gutkovskiy_, Mar 31 2016: (Start) . o o o o o o o o o o o o . o o . o o o o o o o o o o o o o o o o o o o o o o o o . o o o o o o o o o o o o . o o o o o o o o o o o o o o o o o o o o . o o o o o o o o o o o o o o o o o o o o o o o o . o o o o o o . o o o o o o o o o o o o o o o o o o o o . . n=1 n=2 n=3 n=4 (End)
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Crossrefs
Programs
-
Magma
[n*(7*n+3)/2: n in [0..44]];
-
Mathematica
Table[(n - 1) (7 n - 4)/2, {n, 100}] (* Vladimir Joseph Stephan Orlovsky, Jul 06 2011 *) LinearRecurrence[{3,-3,1},{0,5,17},50] (* Harvey P. Dale, Sep 07 2022 *)
-
PARI
a(n)=n*(7*n+3)/2 \\ Charles R Greathouse IV, Sep 24 2015
Formula
G.f.: x*(5+2*x)/(1-x)^3.
a(n) - a(-n) = A008585(n).
a(n) + a(-n) = A033582(n).
n*a(n+1) - (n+1)*a(n) = A024966(n). - Bruno Berselli, May 30 2012
n*a(n+2) - (n+2)*a(n) = A067727(n) for n>0. - Bruno Berselli, May 30 2012
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>2, a(0)=0, a(1)=5, a(2)=17. - Philippe Deléham, Mar 26 2013
a(n) = A174738(7*n+4). - Philippe Deléham, Mar 26 2013
E.g.f.: (1/2)*(7*x^2 + 10*x)*exp(x). - G. C. Greubel, Jul 17 2017
Comments