A186202 The maximal set of disjoint prime cycle permutations on n elements which generate unique subgroups of S(n).
0, 1, 4, 13, 41, 151, 652, 2675, 10579, 59071, 711536, 6180307, 76629775, 873676259, 7496233396, 49493077951, 1571673343007, 24729597043375, 584039297226784, 8662254974851091, 87570847718549791, 1147293660298060507, 66175019781864421220, 1378758199197350367079
Offset: 1
Examples
a(2): (0,1). a(3): (1,2), (0,1), (0,1,2), (0,2).
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..452
- Chad Brewbaker, The exact classical query complexity of the hidden subgroup detection problem, (2008)
Programs
-
Maple
with(numtheory): a:= n-> n! *add(add(1/(p^i *i! *(n-i*p)! *(p-1)), i=1..floor(n/p)), p={ithprime(k) $k=1..pi(n)}): seq(a(n), n=1..25); # Alois P. Heinz, Apr 07 2011
-
Mathematica
a[n_] := n!*Sum[ 1/(p^i*i!*(n-i*p)!*(p-1)), {p, Prime /@ Range[ PrimePi[n] ] }, {i, 1, Floor[n/p]}]; Table[a[n], {n, 1, 24}] (* Jean-François Alcover, Aug 20 2013, after Alois P. Heinz *)
-
PARI
a(n)={sum(p=2, n, if(isprime(p), sum(k=1, n\p, n!/(k!*(n-k*p)!*p^k))/(p-1)))} \\ Andrew Howroyd, Jul 04 2018
Formula
a(n) = n! * Sum_{p|p prime, p<=n}
Sum_{i=1..floor(n/p)} 1 /(p^i*i!*(n-i*p)!*(p-1)).
Comments