cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A181951 Number of cyclic subgroups of prime order in the Alternating Group A_n.

Original entry on oeis.org

0, 0, 1, 7, 31, 121, 526, 2227, 9283, 54931, 694156, 6104011, 76333687, 872550043, 7491293356, 49469173951, 1571562887071, 24729107440927, 584036983443568, 8662243014551731, 87570785839885951, 1147293350653737211, 66175018194591458692, 1378758190497550145383
Offset: 1

Views

Author

Olivier Gérard, Apr 03 2012

Keywords

Crossrefs

Cf. A001465, A181955, A186202 (symmetric group).

Programs

  • Mathematica
    a[n_] := Sum[If[PrimeQ[p], Sum[If[p > 2 || Mod[k, 2] == 0, n!/(k!*(n - k*p)!*p^k)/(p - 1), 0], {k, 1, n/p}], 0], {p, 2, n}];
    Array[a, 24] (* Jean-François Alcover, Jul 06 2018, after Andrew Howroyd *)
  • PARI
    a(n)={sum(p=2, n, if(isprime(p), sum(k=1, n\p, if(p>2||k%2==0, n!/(k!*(n-k*p)!*p^k)))/(p-1)))}

Formula

a(n) = A186202(n) - A001465(n). - Andrew Howroyd, Jul 04 2018

Extensions

Terms a(9) and beyond from Andrew Howroyd, Jul 04 2018

A214003 Number of degree-n permutations of prime order.

Original entry on oeis.org

0, 1, 5, 17, 69, 299, 1805, 9099, 37331, 205559, 4853529, 49841615, 789513659, 9021065871, 70737031469, 420565124399, 22959075244095, 385032305178719, 10010973102879761, 152163983393187399, 1498273284120348539, 15639918041915598815, 1296204202723400597109
Offset: 1

Views

Author

Stephen A. Silver, Feb 15 2013

Keywords

Examples

			The symmetric group S_5 has 25 elements of order 2, 20 elements of order 3, and 24 elements of order 5. All other elements are of nonprime order (1, 4, or 6), so a(5) = 25 + 20 + 24 = 69.
		

Crossrefs

Programs

  • Maple
    b:= proc(n,p) option remember;
          `if`(n add(b(n, ithprime(i)), i=1..numtheory[pi](n)):
    seq(a(n), n=1..30);  # Alois P. Heinz, Feb 16 2013
    # second Maple program:
    b:= proc(n, g) option remember; `if`(n=0, `if`(isprime(g), 1, 0),
          add(b(n-j, ilcm(j, g))*(n-1)!/(n-j)!, j=1..n))
        end:
    a:= n-> b(n, 1):
    seq(a(n), n=1..23);  # Alois P. Heinz, Jan 19 2023
  • Mathematica
    f[list_] :=Total[list]!/Apply[Times, list]/Apply[Times, Map[Length, Split[list]]!]; Table[Total[Map[f, Select[Partitions[n],PrimeQ[Apply[LCM, #]] &]]], {n, 1,23}] (* Geoffrey Critzer, Nov 08 2015 *)

Formula

a(n) = Sum_{p prime} A057731(n,p).
E.g.f.: exp(x)*Sum_{p in Primes} exp(x^p/p)-1. - Geoffrey Critzer, Nov 08 2015

A181954 Weighted sum of all cyclic subgroups of prime order of the symmetric group S_n.

Original entry on oeis.org

0, 2, 9, 30, 110, 450, 2457, 11774, 47910, 264630, 5565065, 56021922, 866143434, 9894742130, 78233264865, 470058202350, 24530748587102, 409761902222094, 10595012400106545, 160826238368038490, 1585844131838898330, 16787211702213659322, 1362379222505265018329
Offset: 1

Views

Author

Olivier Gérard, Apr 03 2012

Keywords

Comments

Sum of the orders of all subgroups of prime order in S_n.

Examples

			The symmetric group S_3 has one subgroup of order 3 and three subgroups of order 2, and no other subgroups of prime order. So a(3) = 3 + 2 + 2 + 2 = 9.
		

Crossrefs

Cf. A181955 (the alternating case).

Programs

  • Mathematica
    a[n_] := Sum[If[PrimeQ[p], Sum[n!/(k!*(n-k*p)!*p^k), {k, 1, n/p}]*p/(p-1), 0], {p, 2, n}];
    Array[a, 24] (* Jean-François Alcover, Jul 06 2018, after Andrew Howroyd *)
  • PARI
    a(n)={sum(p=2, n, if(isprime(p), sum(k=1, n\p, n!/(k!*(n-k*p)!*p^k))*p/(p-1)))} \\ Andrew Howroyd, Jul 03 2018

Formula

a(n) = A186202(n) + A214003(n).

Extensions

More terms from Stephen A. Silver, Feb 16 2013

A387061 Number of Sylow permutations in S_n.

Original entry on oeis.org

0, 0, 1, 5, 23, 99, 479, 2645, 19599, 154007, 1271519, 11688489, 126123095, 1481833859, 15162417087, 126294191309, 2497347563039, 53642575418415, 937621220224319, 17116389710781136, 281286727706878100
Offset: 0

Views

Author

Joan Thibault, Aug 15 2025

Keywords

Comments

Sylow permutations are permutations for which the induced group is a Sylow group.
Equivalently, a permutation x is Sylow if there exists a prime number p, such that for each cycle c in the cycle decomposition of x, c has length some power of p.
Not all cycles need to have the same length; e.g., ((1 2)(3 4 5 6)) is a Sylow permutation in S_6.
We exclude the identity from Sylow permutations.
All permutation groups are uniquely characterized by the Sylow permutations they contain (and one can reconstruct said permutation group by computing the group induced by this set).

Examples

			For a(3) = 5, the solutions are { ((1 2)) ((1 3)) ((2 3)) ((1 2 3)) ((1 3 2)) } (1-length cycles are omitted from the decomposition).
For a(4) = 23, the solutions are (up to permutation) { ((1 2)) ((1 2)(3 4)) ((1 2 3 4)) ((1 2 3)) }.
For a(6) = 479, the solutions include (for example) ((1 2)(3 4 5 6)) but not ((1 2)(3 4 5)).
		

Crossrefs

Showing 1-4 of 4 results.