cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A186202 The maximal set of disjoint prime cycle permutations on n elements which generate unique subgroups of S(n).

Original entry on oeis.org

0, 1, 4, 13, 41, 151, 652, 2675, 10579, 59071, 711536, 6180307, 76629775, 873676259, 7496233396, 49493077951, 1571673343007, 24729597043375, 584039297226784, 8662254974851091, 87570847718549791, 1147293660298060507, 66175019781864421220, 1378758199197350367079
Offset: 1

Views

Author

Chad Brewbaker, Feb 14 2011

Keywords

Comments

Given an subgroup g of S(n) that is unknown and an oracle which takes as input a permutation on n elements, and returns true IFF the permutation is a member of the subgroup; a(n) is the minimum number of permutations that need to be queried to prove g consists of only the identity permutation.
a(n) is the size of a minimum dominating set in the permutation detection graph G(n) with loops removed. Let G(n) have n! vertices, each labeled with unique permutation from S(n). There is a directed edge from i->j IFF the permutation label on vertex j is in the group generated by the single permutation designated by the label on i.
a(n) is an exact bound on the worst case complexity of nontrivial automorphism detection for a generic combinatorial object on n elements. For tractable problem sizes this can yield significant savings over the brute force testing of all n!-1 nontrivial permutations. [Chad Brewbaker]
Number of cyclic subgroups of prime order in the symmetric group. [Olivier Gérard, Apr 03 2012]

Examples

			a(2): (0,1).
a(3): (1,2), (0,1), (0,1,2), (0,2).
		

Crossrefs

Programs

  • Maple
    with(numtheory):
    a:= n-> n! *add(add(1/(p^i *i! *(n-i*p)! *(p-1)),
                i=1..floor(n/p)), p={ithprime(k) $k=1..pi(n)}):
    seq(a(n), n=1..25);  # Alois P. Heinz, Apr 07 2011
  • Mathematica
    a[n_] := n!*Sum[ 1/(p^i*i!*(n-i*p)!*(p-1)), {p, Prime /@ Range[ PrimePi[n] ] }, {i, 1, Floor[n/p]}]; Table[a[n], {n, 1, 24}] (* Jean-François Alcover, Aug 20 2013, after Alois P. Heinz *)
  • PARI
    a(n)={sum(p=2, n, if(isprime(p), sum(k=1, n\p, n!/(k!*(n-k*p)!*p^k))/(p-1)))} \\ Andrew Howroyd, Jul 04 2018

Formula

a(n) = n! * Sum_{p|p prime, p<=n}
Sum_{i=1..floor(n/p)} 1 /(p^i*i!*(n-i*p)!*(p-1)).

A181955 Weighted sum of all cyclic subgroups of prime order in the Alternating group.

Original entry on oeis.org

0, 0, 3, 18, 90, 390, 2205, 10878, 45318, 256350, 5530305, 55869330, 865551258, 9892489698, 78223384785, 470010394350, 24530527675230, 409760923017198, 10595007772540113, 160826214447439770, 1585844008081570650, 16787211082925012730, 1362379219330719093273
Offset: 1

Views

Author

Olivier Gérard, Apr 03 2012

Keywords

Comments

Sum of p for all p-subgroups in Alt_n.

Crossrefs

Cf. A181951 (number of such subgroups).
Cf. A181954 (symmetric case).
Cf. A001465.

Programs

  • PARI
    a(n)={sum(p=2, n, if(isprime(p), sum(k=1, n\p, if(p>2||k%2==0, n!/(k!*(n-k*p)!*p^k)))*p/(p-1)))} \\ Andrew Howroyd, Jul 03 2018

Formula

a(n) = A181954(n) - 2*A001465(n). - Andrew Howroyd, Jul 03 2018

Extensions

Terms a(9) and beyond from Andrew Howroyd, Jul 03 2018

A181967 Sum of the sizes of the normalizers of all prime order cyclic subgroups of the alternating group A_n.

Original entry on oeis.org

0, 0, 3, 24, 180, 1440, 12600, 120960, 1270080, 14515200, 179625600, 2634508800, 37362124800, 566658892800, 9807557760000, 167382319104000, 3023343138816000, 57621363351552000, 1155628453883904000, 25545471085854720000, 587545834974658560000, 13488008733331292160000
Offset: 1

Views

Author

Olivier Gérard, Apr 04 2012

Keywords

Comments

The first 11 terms of this sequence are the same as A317527. - Andrew Howroyd, Jul 30 2018

Crossrefs

Cf. A181951 for the number of such subgroups.
Cf. A181966 is the symmetric group case.

Programs

  • GAP
    List([1..7], n->Sum(Filtered( ConjugacyClassesSubgroups( AlternatingGroup(n)), x->IsPrime( Size( Representative(x))) ), x->Size(x)*Size( Normalizer( AlternatingGroup(n), Representative(x))) )); # Andrew Howroyd, Jul 30 2018
    
  • GAP
    a:=function(n) local total, perm, g, p, k;
      total:= 0; g:= AlternatingGroup(n);
      for p in Filtered([2..n], IsPrime) do for k in [1..QuoInt(n,p)] do
         if p>2 or IsEvenInt(k) then
           perm:=PermList(List([0..p*k-1], i->i - (i mod p) + ((i + 1) mod p) + 1));
           total:=total + Size(Normalizer(g, perm)) * Factorial(n) / (p^k * (p-1) * Factorial(k) * Factorial(n-k*p));
         fi;
      od; od;
      return total;
    end; # Andrew Howroyd, Jul 30 2018
    
  • PARI
    a(n)={n!*sum(p=2, n, if(isprime(p), if(p==2, n\4, n\p)))/2} \\ Andrew Howroyd, Jul 30 2018

Formula

a(n) = n! * (A013939(n) - floor((n + 2)/4)) / 2. - Andrew Howroyd, Jul 30 2018

Extensions

Some incorrect conjectures removed by Andrew Howroyd, Jul 30 2018
Terms a(9) and beyond from Andrew Howroyd, Jul 30 2018
Showing 1-3 of 3 results.