A186202
The maximal set of disjoint prime cycle permutations on n elements which generate unique subgroups of S(n).
Original entry on oeis.org
0, 1, 4, 13, 41, 151, 652, 2675, 10579, 59071, 711536, 6180307, 76629775, 873676259, 7496233396, 49493077951, 1571673343007, 24729597043375, 584039297226784, 8662254974851091, 87570847718549791, 1147293660298060507, 66175019781864421220, 1378758199197350367079
Offset: 1
a(2): (0,1).
a(3): (1,2), (0,1), (0,1,2), (0,2).
-
with(numtheory):
a:= n-> n! *add(add(1/(p^i *i! *(n-i*p)! *(p-1)),
i=1..floor(n/p)), p={ithprime(k) $k=1..pi(n)}):
seq(a(n), n=1..25); # Alois P. Heinz, Apr 07 2011
-
a[n_] := n!*Sum[ 1/(p^i*i!*(n-i*p)!*(p-1)), {p, Prime /@ Range[ PrimePi[n] ] }, {i, 1, Floor[n/p]}]; Table[a[n], {n, 1, 24}] (* Jean-François Alcover, Aug 20 2013, after Alois P. Heinz *)
-
a(n)={sum(p=2, n, if(isprime(p), sum(k=1, n\p, n!/(k!*(n-k*p)!*p^k))/(p-1)))} \\ Andrew Howroyd, Jul 04 2018
A181955
Weighted sum of all cyclic subgroups of prime order in the Alternating group.
Original entry on oeis.org
0, 0, 3, 18, 90, 390, 2205, 10878, 45318, 256350, 5530305, 55869330, 865551258, 9892489698, 78223384785, 470010394350, 24530527675230, 409760923017198, 10595007772540113, 160826214447439770, 1585844008081570650, 16787211082925012730, 1362379219330719093273
Offset: 1
Cf.
A181951 (number of such subgroups).
-
a(n)={sum(p=2, n, if(isprime(p), sum(k=1, n\p, if(p>2||k%2==0, n!/(k!*(n-k*p)!*p^k)))*p/(p-1)))} \\ Andrew Howroyd, Jul 03 2018
A181967
Sum of the sizes of the normalizers of all prime order cyclic subgroups of the alternating group A_n.
Original entry on oeis.org
0, 0, 3, 24, 180, 1440, 12600, 120960, 1270080, 14515200, 179625600, 2634508800, 37362124800, 566658892800, 9807557760000, 167382319104000, 3023343138816000, 57621363351552000, 1155628453883904000, 25545471085854720000, 587545834974658560000, 13488008733331292160000
Offset: 1
Cf.
A181951 for the number of such subgroups.
Cf.
A181966 is the symmetric group case.
-
List([1..7], n->Sum(Filtered( ConjugacyClassesSubgroups( AlternatingGroup(n)), x->IsPrime( Size( Representative(x))) ), x->Size(x)*Size( Normalizer( AlternatingGroup(n), Representative(x))) )); # Andrew Howroyd, Jul 30 2018
-
a:=function(n) local total, perm, g, p, k;
total:= 0; g:= AlternatingGroup(n);
for p in Filtered([2..n], IsPrime) do for k in [1..QuoInt(n,p)] do
if p>2 or IsEvenInt(k) then
perm:=PermList(List([0..p*k-1], i->i - (i mod p) + ((i + 1) mod p) + 1));
total:=total + Size(Normalizer(g, perm)) * Factorial(n) / (p^k * (p-1) * Factorial(k) * Factorial(n-k*p));
fi;
od; od;
return total;
end; # Andrew Howroyd, Jul 30 2018
-
a(n)={n!*sum(p=2, n, if(isprime(p), if(p==2, n\4, n\p)))/2} \\ Andrew Howroyd, Jul 30 2018
Showing 1-3 of 3 results.
Comments