A186253 Indices of zeros of the sequence u(n)=abs(u(n-1)-gcd(u(n-1),n-1)), u(1)=1.
2, 5, 11, 23, 47, 79, 157, 313, 619, 1237, 2473, 4909, 9817, 19603, 39199, 78193, 156019, 311347, 622669, 1244149, 2487739, 4975111, 9950221, 19900399, 39800797, 79601461, 159202369, 318404629, 636788881, 1273577761, 2547155419, 5094310069, 10188620041
Offset: 1
Keywords
Links
- Moritz Firsching, Table of n, a(n) for n = 1..315
- B. Cloitre, 10 conjectures in additive number theory, arXiv:1101.4274 [math.NT], 2011.
- M. F. Hasler, Rowland-Cloître type prime generating sequences, OEIS Wiki, August 2015.
Programs
-
Haskell
a186253 n = a186253_list !! (n-1) a186253_list = filter ((== 0) . a261301) [1..] -- Reinhard Zumkeller, Sep 07 2015
-
Mathematica
a = m = 1; Reap[For[n = 2, n <= 10^7, n++, a = Abs[a - GCD[a, m*n - 1]]; If[a == 0, Print[m*n + m - 1]; Sow[m*n + m - 1]]]][[2, 1]] (* Jean-François Alcover, Feb 05 2019, from PARI *) nxt[{n_,a_}]:={n+1,Abs[a-GCD[a,n]]}; Position[NestList[nxt,{1,1},13*10^5][[All,2]],0]// Flatten (* The program generates the first 20 terms of the sequence. *) (* Harvey P. Dale, Oct 02 2022 *)
-
PARI
a=1;m=1;for(n=2,1e7,a=abs(a-gcd(a,m*n-1));if(a==0,print1(m*n+m-1,",")))
-
PARI
next_a(last_a) = { local(A=last_a,B=last_a,C=2*last_a+1); while(A>0, D=divisors(C); k1=10*D[2]; for(j=2,#D, d=D[j];k=((A+1-B+d)/2)%d; if(k==0,k=d); if(k<=k1,k1=k;d1=d)); if(k1-1+d1==A,B=B+1); A = max(A-(k1-1)-d1,0); B = B + k1; C = C - (d1 - 1); ); return(B); } a=2 for(n=1,99,print1(a,", ");a=next_a(a)) \\ Jan Büthe and Moritz Firsching, Aug 04 2015
-
PARI
m=a=k=1; for(n=1, 30, while( a>d=vecmin(apply(p->a%p, factor(N=m*(k+a)+m-1)[,1])), a-=d+gcd(a-d,N); k+=1+d); k+=a+1; print1(a=N,",")) \\ M. F. Hasler, Aug 22 2015
Formula
Conjecture: a(n) is asymptotic to c*2^n with c = 1.1861...
Extensions
Definition clarified by M. F. Hasler, Aug 14 2015
Comments