cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A186253 Indices of zeros of the sequence u(n)=abs(u(n-1)-gcd(u(n-1),n-1)), u(1)=1.

Original entry on oeis.org

2, 5, 11, 23, 47, 79, 157, 313, 619, 1237, 2473, 4909, 9817, 19603, 39199, 78193, 156019, 311347, 622669, 1244149, 2487739, 4975111, 9950221, 19900399, 39800797, 79601461, 159202369, 318404629, 636788881, 1273577761, 2547155419, 5094310069, 10188620041
Offset: 1

Views

Author

Benoit Cloitre, Feb 16 2011

Keywords

Comments

For any fixed integer m>=1 define u(1)=1 and u(n)=abs(u(n-1)-gcd(u(n-1),m*n-1)). Then (b_m(k))_{k>=1} is the sequence of integers such that u(b_m(k))=0 and we conjecture that for k large enough m*b_m(k)+m-1 is a prime number. Here for m=1 it appears a(n) is prime for n>=1.
See A261301 for the sequence u relevant here (m=1). - M. F. Hasler, Aug 14 2015
A261301(a(n)-1) = 1; A261301(a(n)) = 0; A261301(a(n)+1) = a(n). - Reinhard Zumkeller, Sep 07 2015

Crossrefs

Programs

  • Haskell
    a186253 n = a186253_list !! (n-1)
    a186253_list = filter ((== 0) . a261301) [1..]
    -- Reinhard Zumkeller, Sep 07 2015
  • Mathematica
    a = m = 1; Reap[For[n = 2, n <= 10^7, n++, a = Abs[a - GCD[a, m*n - 1]]; If[a == 0, Print[m*n + m - 1]; Sow[m*n + m - 1]]]][[2, 1]] (* Jean-François Alcover, Feb 05 2019, from PARI *)
    nxt[{n_,a_}]:={n+1,Abs[a-GCD[a,n]]}; Position[NestList[nxt,{1,1},13*10^5][[All,2]],0]// Flatten (* The program generates the first 20 terms of the sequence. *) (* Harvey P. Dale, Oct 02 2022 *)
  • PARI
    a=1;m=1;for(n=2,1e7,a=abs(a-gcd(a,m*n-1));if(a==0,print1(m*n+m-1,",")))
    
  • PARI
    next_a(last_a) = {
      local(A=last_a,B=last_a,C=2*last_a+1);
      while(A>0,
        D=divisors(C);
        k1=10*D[2];
        for(j=2,#D, d=D[j];k=((A+1-B+d)/2)%d;
          if(k==0,k=d); if(k<=k1,k1=k;d1=d));
        if(k1-1+d1==A,B=B+1);
        A = max(A-(k1-1)-d1,0);
        B = B + k1;
        C = C - (d1 - 1);
      );
      return(B);
    }
    a=2
    for(n=1,99,print1(a,", ");a=next_a(a)) \\ Jan Büthe and Moritz Firsching, Aug 04 2015
    
  • PARI
    m=a=k=1; for(n=1, 30, while( a>d=vecmin(apply(p->a%p, factor(N=m*(k+a)+m-1)[,1])), a-=d+gcd(a-d,N); k+=1+d); k+=a+1; print1(a=N,",")) \\ M. F. Hasler, Aug 22 2015
    

Formula

Conjecture: a(n) is asymptotic to c*2^n with c = 1.1861...

Extensions

Definition clarified by M. F. Hasler, Aug 14 2015