A186366 Triangle read by rows: T(n,k) is the number of cycle-up-down permutations of {1,2,...,n} having k cycles (1<=k<=n).
1, 1, 1, 1, 3, 1, 2, 7, 6, 1, 5, 20, 25, 10, 1, 16, 70, 105, 65, 15, 1, 61, 287, 490, 385, 140, 21, 1, 272, 1356, 2548, 2345, 1120, 266, 28, 1, 1385, 7248, 14698, 15204, 8715, 2772, 462, 36, 1, 7936, 43280, 93420, 105880, 69405, 26985, 6090, 750, 45, 1, 50521, 285571, 649715, 793210, 577225, 260337, 72765, 12210, 1155, 55, 1
Offset: 1
Examples
T(3,2)=3 because we have (1)(23), (12)(3), and (13)(2). T(4,3)=6 because we have (1)(2)(34), (1)(23)(4), (1)(24)(3), (12)(3)(4), (13)(2)(4), and (14)(2)(3). Triangle starts: 1; 1, 1; 1, 3, 1; 2, 7, 6, 1; 5, 20, 25, 10, 1; 16, 70, 105, 65, 15, 1; 61, 287, 490, 385, 140, 21, 1; 272, 1356, 2548, 2345, 1120, 266, 28, 1; 1385, 7248, 14698, 15204, 8715, 2772, 462, 36, 1; ...
Links
- Alois P. Heinz, Rows n = 1..141, flattened
- P. Csikvari, Co-adjoint polynomial, arXiv:1603.0259 [math.CO], 2016.
- Emeric Deutsch and Sergi Elizalde, Cycle up-down permutations, arXiv:0909.5199 [math.CO], 2009; and also, Australas. J. Combin. 50 (2011), 187-199.
- F. Disanto, André permutations, right-to-left and left-to-right minima, arXiv:1202.1139 [math.CO], 2012-2014; and also, Séminaire Lotharingien de Combinatoire, B70f (2014), 13 pp.
- W. P. Johnson, Some polynomials associated with up-down permutations, Discrete Math., 210 (2000), 117-136.
- D. E. Knuth, Convolution polynomials, Mathematica J. 2.1 (1992), no. 4, 67-78.
- A. Scott and A. Sokal, Some variants of the exponential formula, with application to the multivariate Tutte polynomial (alias Potts model), arXiv:0803.1477 [math.CO], 2009.
Crossrefs
Programs
-
Maple
G := 1/(1-sin(z))^t: Gser := simplify(series(G, z = 0, 16)): for n to 11 do P[n] := sort(expand(factorial(n)*coeff(Gser, z, n))) end do: for n from 0 to 11 do seq(coeff(P[n], t, j), j = 1 .. n) end do; # yields sequence in triangular form # second Maple program: b:= proc(u, o) option remember; `if`(u+o=0, 1, add(b(o-1+j, u-j), j=1..u)) end: g:= proc(n) option remember; expand(`if`(n=0, 1, add(g(n-j)*binomial(n-1, j-1)*x*b(j-1, 0), j=1..n))) end: T:= n-> (p-> seq(coeff(p, x, i), i=1..n))(g(n)): seq(T(n), n=1..12); # Alois P. Heinz, May 21 2021
-
Mathematica
rows = 12; a111[n_] := If[EvenQ[n], Abs[EulerE[n]], Abs[(2^(n+1)*(2^(n+1) - 1)* BernoulliB[n+1])/(n+1)]]; BellMatrix[f_, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len-1}, {k, 0, len-1}]]; B = BellMatrix[a111, rows]; Table[B[[n, k]], {n, 2, rows}, {k, 2, n}] // Flatten (* Jean-François Alcover, Jul 23 2018, after Peter Luschny *)
-
Maxima
T(n,m):=2*sum((stirling1(2*j-n,m)*(-1)^(m-n)*sum((2*i-2*j+n)^n*binomial(2*j-n,i)*(-1)^(j-i),i,0,(2*j-n)/2))/(2^(2*j-n)*(2*j-n)!),j,floor((n+m)/2),n); /* Vladimir Kruchinin, Mar 26 2013 */
-
Sage
# uses[bell_matrix from A264428] # Adds a column 1,0,0,0, ... at the left side of the triangle. bell_matrix(lambda n: A000111(n), 10) # Peter Luschny, Jan 18 2016
Formula
E.g.f.: 1/(1-sin(z))^t.
The trivariate e.g.f. H(t,s,z) of the cycle-up-down permutations of {1,2,...,n} with respect to size (marked by z), number of cycles (marked by t), and number of fixed points (marked by x) is given by H(t,x,z)=exp((x-1)tz)/(1-sin z)^t.
T(n,m) = 2*sum(j=floor((n+m)/2)..n, (stirling1(2*j-n,m)*(-1)^(m-n)*sum(i=0..(2*j-n)/2, (2*i-2*j+n)^n*binomial(2*j-n,i)*(-1)^(j-i)))/(2^(2*j-n)*(2*j-n)!)). - Vladimir Kruchinin, Mar 26 2013
Comments