A186420
a(n) = binomial(2n,n)^4.
Original entry on oeis.org
1, 16, 1296, 160000, 24010000, 4032758016, 728933458176, 138735983333376, 27435582641610000, 5588044012339360000, 1165183173971324375296, 247639903129149250277376, 53472066459540320483696896, 11701285507234585729600000000, 2589980371199606611713600000000
Offset: 0
G.f.: 4F3({1/2,1/2,1/2,1/2},{1,1,1},256x) where 4F3 is a hypergeometric series.
Cf.
A000108,
A000888,
A186414,
A186415,
A186416,
A186418,
A186419,
A000897,
A006480,
A008977,
A188662.
-
Table[Binomial[2n,n]^4,{n,0,20}]
Table[Coefficient[Series[HypergeometricPFQ[{1/2, 1/2, 1/2, 1/2}, {1, 1, 1}, 256 x], {x, 0, n}], x, n], {n, 0, 14}] (* Michael De Vlieger, Jul 13 2016 *)
-
makelist(binomial(2*n,n)^4,n,0,40);
A186414
a(n) = binomial(2n,n)^3/(n+1)^2.
Original entry on oeis.org
1, 2, 24, 500, 13720, 444528, 16099776, 631628712, 26317863000, 1149330319280, 52120705189696, 2437827529099872, 117006104720150464, 5740095404246000000, 286939169121965760000, 14579498741074214418000
Offset: 0
-
[Binomial(2*n,n)^3/(n+1)^2: n in [0..50]]; // Vincenzo Librandi, Mar 27 2011
-
Table[Binomial[2n, n]^3/(n + 1)^2, {n, 0, 20}]
-
makelist(binomial(2*n,n)^3/(n+1)^2,n,0,40);
A186416
a(n) = binomial(2n,n)^4/(n+1)^3.
Original entry on oeis.org
1, 2, 48, 2500, 192080, 18670176, 2125170432, 270968717448, 37634544090000, 5588044012339360, 875419364366134016, 143310129125665075392, 24338673855047938317568, 4264316875814353400000000, 767401591466550107174400000, 141345980472409642279275210000, 26569505644587874058090478570000
Offset: 0
-
A186416 := proc(n) binomial(2*n,n)^4/(n+1)^3 ; end proc: # R. J. Mathar, Feb 23 2011
-
Table[Binomial[2n,n]^4/(n+1)^3,{n,0,40}]
-
makelist(binomial(2*n,n)^4/(n+1)^3,n,0,40);
A186418
a(n) = binomial(2*n,n)^4/(n + 1)^2.
Original entry on oeis.org
1, 4, 144, 10000, 960400, 112021056, 14876193024, 2167749739584, 338710896810000, 55880440123393600, 9629613008027474176, 1719721549507980904704, 316402760115623198128384, 59700436261400947600000000
Offset: 0
-
Table[Binomial[2n,n]^4/(n+1)^2,{n,0,40}]
-
makelist(binomial(2*n,n)^4/(n+1)^2,n,0,40);
A186419
a(n) = binomial(2*n,n)^4/(n + 1).
Original entry on oeis.org
1, 8, 432, 40000, 4802000, 672126336, 104133351168, 17341997916672, 3048398071290000, 558804401233936000, 105925743088302215936, 20636658594095770856448, 4113235881503101575668992, 835806107659613266400000000, 172665358079973774114240000000
Offset: 0
-
Table[Binomial[2n,n]^4/(n+1),{n,0,40}]
-
makelist(binomial(2*n,n)^4/(n+1),n,0,12);
A367178
Triangle read by rows. T(n, k) = binomial(n, k)^2 * CatalanNumber(k).
Original entry on oeis.org
1, 1, 1, 1, 4, 2, 1, 9, 18, 5, 1, 16, 72, 80, 14, 1, 25, 200, 500, 350, 42, 1, 36, 450, 2000, 3150, 1512, 132, 1, 49, 882, 6125, 17150, 18522, 6468, 429, 1, 64, 1568, 15680, 68600, 131712, 103488, 27456, 1430, 1, 81, 2592, 35280, 222264, 666792, 931392, 555984, 115830, 4862
Offset: 0
Triangle T(n, k) starts:
[0] 1;
[1] 1, 1;
[2] 1, 4, 2;
[3] 1, 9, 18, 5;
[4] 1, 16, 72, 80, 14;
[5] 1, 25, 200, 500, 350, 42;
[6] 1, 36, 450, 2000, 3150, 1512, 132;
[7] 1, 49, 882, 6125, 17150, 18522, 6468, 429;
[8] 1, 64, 1568, 15680, 68600, 131712, 103488, 27456, 1430;
[9] 1, 81, 2592, 35280, 222264, 666792, 931392, 555984, 115830, 4862;
-
T := (n, k) -> binomial(n, k)^2 * binomial(2*k, k) / (k + 1):
seq(seq(T(n, k), k = 0..n), n = 0..9);
Showing 1-6 of 6 results.