cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A186423 Partial sums of A186421.

Original entry on oeis.org

0, 1, 3, 4, 8, 11, 17, 20, 28, 33, 43, 48, 60, 67, 81, 88, 104, 113, 131, 140, 160, 171, 193, 204, 228, 241, 267, 280, 308, 323, 353, 368, 400, 417, 451, 468, 504, 523, 561, 580, 620, 641, 683, 704, 748, 771, 817, 840, 888, 913, 963, 988, 1040, 1067, 1121, 1148, 1204, 1233, 1291, 1320
Offset: 0

Views

Author

Reinhard Zumkeller, Feb 21 2011

Keywords

Crossrefs

A062717 is the subsequence of even terms.
A186424 is the subsequence of odd terms.

Programs

  • GAP
    List([0..65], n-> (6*n^2 +6*n +3 +(-1)^n*(2*n+1) -4*(-1)^Binomial(n+1, 2))/16); # G. C. Greubel, Oct 09 2019
    
  • Haskell
    a186423 n = a186423_list !! n
    a186423_list = scanl1 (+) a186421_list
    
  • Magma
    [(6*n^2 +6*n +3 +(-1)^n*(2*n+1) -4*(-1)^Binomial(n+1, 2))/16: n in [0..65]]; // G. C. Greubel, Oct 09 2019
    
  • Maple
    A087960 := proc(n) op((n mod 4)+1,[1,-1,-1,1]) ; end proc:
    A186423 := proc(n) 3*n*(n+1)/8 +3/16 +(-1)^n*(2*n+1)/16 -A087960(n)/4 ; end proc: # R. J. Mathar, Feb 28 2011
  • Mathematica
    CoefficientList[Series[x(1+2x+2x^3+x^4)/((1-x)^3(1+x)^2(1+x^2)),{x, 0, 65}],x]  (* Harvey P. Dale, Mar 13 2011 *)
    Table[(6*n^2 +6*n +3 +(-1)^n*(2*n+1) -4*(-1)^Binomial[n+1, 2])/16, {n, 0, 65}] (* G. C. Greubel, Oct 09 2019 *)
  • PARI
    vector(66, n, my(m=n-1); (6*m^2 +6*m +3 +(-1)^m*(2*m+1) -4*(-1)^binomial(m+1, 2))/16) \\ G. C. Greubel, Oct 09 2019
    
  • Python
    def A186423(n): return (6*n*(n+1)+3+(-2*n-1 if n&1 else 2*n+1)+(4 if n+1&2 else -4))>>4 # Chai Wah Wu, Jan 31 2023
  • Sage
    [(6*n^2 +6*n +3 +(-1)^n*(2*n+1) -4*(-1)^binomial(n+1, 2))/16 for n in (0..65)] # G. C. Greubel, Oct 09 2019
    

Formula

From R. J. Mathar, Feb 28 2011: (Start)
G.f.: x*(1 + 2*x + 2*x^3 + x^4)/( (1+x^2)*(1+x)^2*(1-x)^3 ).
a(n) = (6*n*(n+1) + 3 + (-1)^n*(2*n+1) - 4*A087960(n))/16. (End)
E.g.f.: ((2 + 5*x + 3*x^2)*cosh(x) + (1 + 7*x + 3*x^2)*sinh(x) + 2*sin(x) - 2*cos(x))/8. - G. C. Greubel, Oct 09 2019

Extensions

More terms added by G. C. Greubel, Oct 09 2019