cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A186424 Odd terms in A186423.

Original entry on oeis.org

1, 3, 11, 17, 33, 43, 67, 81, 113, 131, 171, 193, 241, 267, 323, 353, 417, 451, 523, 561, 641, 683, 771, 817, 913, 963, 1067, 1121, 1233, 1291, 1411, 1473, 1601, 1667, 1803, 1873, 2017, 2091, 2243, 2321, 2481, 2563, 2731, 2817, 2993, 3083, 3267, 3361, 3553, 3651
Offset: 0

Views

Author

Reinhard Zumkeller, Feb 21 2011

Keywords

Comments

Sum of odd square and half of even square. - Vladimir Joseph Stephan Orlovsky, May 20 2011
Numbers m such that 6*m-2 is a square. - Bruno Berselli, Apr 29 2016

Crossrefs

Programs

  • Haskell
    a186424 n = a186424_list !! n
    a186424_list = filter odd a186423_list
    
  • Mathematica
    Table[If[OddQ[n],n^2+((n+1)^2)/2,(n^2)/2+(n+1)^2],{n,0,100}] (* Vladimir Joseph Stephan Orlovsky, May 20 2011 *)
  • Python
    def A186424(n): return (n*(3*n + 2) + 1 if n&1 else n*(3*n + 4) + 2)>>1 # Chai Wah Wu, Jan 31 2023

Formula

From R. J. Mathar, Feb 28 2011: (Start)
G.f.: ( -1-2*x-6*x^2-2*x^3-x^4 ) / ( (1+x)^2*(x-1)^3 ).
a(n) = 3*(1+2*n+2*n^2)/4 + (-1)^n*(1+2*n)/4. (End)
a(n+2) = a(n) + A091999(n+2).
Union of A080859 and A126587: a(2*n) = A080859(n) and a(2*n+1) = A126587(n+1).
From Peter Bala, Feb 13 2021: (Start)
Appears to be the sequence of exponents in the following series expansion:
Sum_{n >= 0} (-1)^n * x^n/Product_{k = 1..n} 1 - x^(2*k-1) = 1 - x - x^3 + x^11 + x^17 - x^33 - x^43 + + - - .... Cf. A053253.
More generally, for nonnegative integer N, we appear to have the identity
Product_{j = 1..N} 1/(1 + x^(2*j-1))*( P(N,x) + Sum_{n >= 1} (-1)^n * x^((2*N+1)*n-N)/Product_{k = 1..n} 1 - x^(2*k-1) ) = 1 - x - x^3 + x^11 + x^17 - x^33 - x^43 + + - - ..., where P(N,x) is a polynomial in x of degree N^2 - 1, with the first few values given empirically by
P(0,x) = 0, P(1,x) = 1, P(2,x) = 1 - x^2 + x^3, P(3,x) = 1 - x^2 + x^5 - x^7 + x^8 and P(4,x) = 1 - x^2 - x^4 + x^5 + x^8 - x^9 + x^12 - x^14 + x^15. Cf. A203568. (End)
E.g.f.: ((2 + 5*x + 3*x^2)*cosh(x) + (1 + 7*x + 3*x^2)*sinh(x))/2. - Stefano Spezia, May 08 2021
Sum_{n>=0} 1/a(n) = sqrt(2)*Pi*sinh(sqrt(2)*Pi/3)/(1+2*cosh(sqrt(2)*Pi/3)). - Amiram Eldar, May 11 2025

A033579 Four times pentagonal numbers: a(n) = 2*n*(3*n-1).

Original entry on oeis.org

0, 4, 20, 48, 88, 140, 204, 280, 368, 468, 580, 704, 840, 988, 1148, 1320, 1504, 1700, 1908, 2128, 2360, 2604, 2860, 3128, 3408, 3700, 4004, 4320, 4648, 4988, 5340, 5704, 6080, 6468, 6868, 7280, 7704, 8140, 8588, 9048, 9520, 10004, 10500, 11008, 11528, 12060
Offset: 0

Views

Author

Keywords

Comments

Subsequence of A062717: A010052(6*a(n)+1) = 1. - Reinhard Zumkeller, Feb 21 2011
Sequence found by reading the line from 0, in the direction 0, 4, ..., in the square spiral whose vertices are the generalized pentagonal numbers A001318. - Omar E. Pol, Sep 08 2011

Crossrefs

Programs

Formula

a(n) = 4*n*(3*n-1)/2 = 6*n^2 - 2*n = 4*A000326(n). - Omar E. Pol, Dec 11 2008
a(n) = 2*A049450(n). - Omar E. Pol, Dec 13 2008
a(n) = a(n-1) + 12*n - 8 for n > 0, a(0)=0. - Vincenzo Librandi, Aug 05 2010
a(n) = A014642(n)/2. - Omar E. Pol, Aug 19 2011
G.f.: x*(4+8*x)/(1-3*x+3*x^2-x^3). - Colin Barker, Jan 06 2012
a(n) = A191967(2*n). - Reinhard Zumkeller, Jul 07 2012
a(n) = A181617(n+1) - A181617(n). - J. M. Bergot, Jun 28 2013
a(n) = (A174371(n) - 1)/6. - Miquel Cerda, Jul 28 2016
From Ilya Gutkovskiy, Jul 28 2016: (Start)
E.g.f.: 2*x*(2 + 3*x)*exp(x).
a(n+1) = Sum_{k=0..n} A017569(k).
Sum_{i>0} 1/a(i) = (9*log(3) - sqrt(3)*Pi)/12 = 0.3705093754425278... (End)
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi/(2*sqrt(3)) - log(2). - Amiram Eldar, Feb 20 2022

Extensions

More terms from Michel Marcus, Mar 04 2014

A062717 Numbers m such that 6*m+1 is a perfect square.

Original entry on oeis.org

0, 4, 8, 20, 28, 48, 60, 88, 104, 140, 160, 204, 228, 280, 308, 368, 400, 468, 504, 580, 620, 704, 748, 840, 888, 988, 1040, 1148, 1204, 1320, 1380, 1504, 1568, 1700, 1768, 1908, 1980, 2128, 2204, 2360, 2440, 2604, 2688, 2860, 2948, 3128, 3220, 3408, 3504
Offset: 1

Views

Author

Jason Earls, Jul 14 2001

Keywords

Comments

X values of solutions to the equation 6*X^3 + X^2 = Y^2. - Mohamed Bouhamida, Nov 06 2007
Arithmetic averages of the k triangular numbers 0, 1, 3, 6, ..., (k-1)*k/2 that take integer values. - Vladimir Joseph Stephan Orlovsky, Aug 05 2009 [edited by Jon E. Schoenfield, Jan 10 2015]
Even terms in A186423; union of A033579 and A033580, A010052(6*a(n)+1) = 1. - Reinhard Zumkeller, Feb 21 2011
a(n) are integers produced by Sum_{i = 1..k-1} i*(k-i)/k, for some k > 0. Values for k are given by A007310 = sqrt(6*a(n)+1), the square roots of those perfect squares. - Richard R. Forberg, Feb 16 2015
Equivalently, numbers of the form 2*h*(3*h+1), where h = 0, -1, 1, -2, 2, -3, 3, -4, 4, ... (see also the sixth comment of A152749). - Bruno Berselli, Feb 02 2017

Crossrefs

Equals 4 * A001318.
Cf. A007310.
Diagonal of array A323674. - Sally Myers Moite, Feb 03 2019

Programs

  • Magma
    [(6*n*(n-1) + (2*n-1)*(-1)^n + 1)/4: n in [1..70]]; // Wesley Ivan Hurt, Apr 21 2021
    
  • Maple
    seq(n^2+n+2*ceil(n/2)^2,n=0..48); # Gary Detlefs, Feb 23 2010
  • Mathematica
    Select[Range[0, 3999], IntegerQ[Sqrt[6# + 1]] &] (* Harvey P. Dale, Mar 10 2013 *)
  • PARI
    je=[]; for(n=0,7000, if(issquare(6*n+1),je=concat(je,n))); je
    
  • PARI
    { n=0; for (m=0, 10^9, if (issquare(6*m + 1), write("b062717.txt", n++, " ", m); if (n==1000, break)) ) } \\ Harry J. Smith, Aug 09 2009
    
  • Python
    def A062717(n): return (n*(3*n + 4) + 1 if n&1 else n*(3*n + 2))>>1 # Chai Wah Wu, Jan 31 2023

Formula

G.f.: 4*x^2*(1 + x + x^2) / ( (1+x)^2*(1-x)^3 ).
a(2*k) = k*(6*k+2), a(2*k+1) = 6*k^2 + 10*k + 4. - Mohamed Bouhamida, Nov 06 2007
a(n) = n^2 - n + 2*ceiling((n-1)/2)^2. - Gary Detlefs, Feb 23 2010
From Bruno Berselli, Nov 28 2010: (Start)
a(n) = (6*n*(n-1) + (2*n-1)*(-1)^n + 1)/4.
6*a(n) + 1 = A007310(n)^2. (End)
E.g.f.: (3*x^2*exp(x) - x*exp(-x) + sinh(x))/2. - Ilya Gutkovskiy, Jun 18 2016
a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5). - Wesley Ivan Hurt, Apr 21 2021
From Amiram Eldar, Mar 11 2022: (Start)
Sum_{n>=2} 1/a(n) = (9-sqrt(3)*Pi)/6.
Sum_{n>=2} (-1)^n/a(n) = 3*(log(3)-1)/2. (End)

A033580 Four times second pentagonal numbers: a(n) = 2*n*(3*n+1).

Original entry on oeis.org

0, 8, 28, 60, 104, 160, 228, 308, 400, 504, 620, 748, 888, 1040, 1204, 1380, 1568, 1768, 1980, 2204, 2440, 2688, 2948, 3220, 3504, 3800, 4108, 4428, 4760, 5104, 5460, 5828, 6208, 6600, 7004, 7420, 7848, 8288, 8740, 9204, 9680, 10168, 10668, 11180, 11704, 12240
Offset: 0

Views

Author

Keywords

Comments

Subsequence of A062717: A010052(6*a(n)+1) = 1. - Reinhard Zumkeller, Feb 21 2011
Sequence found by reading the line from 0, in the direction 0, 8,..., in the square spiral whose vertices are the generalized pentagonal numbers A001318. Opposite numbers to the members of A139267 in the same spiral - Omar E. Pol, Sep 09 2011
a(n) is the number of edges of the octagonal network O(n,n); O(m,n) is defined by Fig. 1 of the Siddiqui et al. reference. - Emeric Deutsch May 13 2018
The partial sums of this sequence give A035006. - Leo Tavares, Oct 03 2021

Crossrefs

Programs

Formula

a(n) = a(n-1) +12*n -4 (with a(0)=0). - Vincenzo Librandi, Aug 05 2010
G.f.: 4*x*(2+x)/(1-x)^3. - Colin Barker, Feb 13 2012
a(-n) = A033579(n). - Michael Somos, Jun 09 2014
E.g.f.: 2*x*(4 + 3*x)*exp(x). - G. C. Greubel, Oct 09 2019
From Amiram Eldar, Jan 14 2021: (Start)
Sum_{n>=1} 1/a(n) = 3/2 - Pi/(4*sqrt(3)) - 3*log(3)/4.
Sum_{n>=1} (-1)^(n+1)/a(n) = -3/2 + Pi/(2*sqrt(3)) + log(2). (End)
From Leo Tavares, Oct 12 2021: (Start)
a(n) = A003154(n+1) - A016813(n). See Crossed Stars illustration.
a(n) = 4*A005449(n). See Four Quarter Star Crosses illustration.
a(n) = 2*A049451(n).
a(n) = A046092(n-1) + A033996(n). See Triangulated Star Crosses illustration.
a(n) = 4*A000217(n-1) + 8*A000217(n).
a(n) = 4*A000217(n-1) + 4*A002378. See Oblong Star Crosses illustration.
a(n) = A016754(n) + 4*A000217(n). See Crossed Diamond Stars illustration.
a(n) = 2*A001105(n) + 4*A000217(n).
a(n) = A016742(n) + A046092(n).
a(n) = 4*A000290(n) + 4*A000217(n). (End)

A186421 Even numbers interleaved with repeated odd numbers.

Original entry on oeis.org

0, 1, 2, 1, 4, 3, 6, 3, 8, 5, 10, 5, 12, 7, 14, 7, 16, 9, 18, 9, 20, 11, 22, 11, 24, 13, 26, 13, 28, 15, 30, 15, 32, 17, 34, 17, 36, 19, 38, 19, 40, 21, 42, 21, 44, 23, 46, 23, 48, 25, 50, 25, 52, 27, 54, 27, 56, 29, 58, 29, 60, 31, 62, 31, 64, 33, 66, 33, 68, 35, 70, 35, 72, 37, 74, 37, 76, 39, 78, 39, 80, 41, 82, 41, 84, 43, 86, 43
Offset: 0

Views

Author

Reinhard Zumkeller, Feb 21 2011

Keywords

Comments

A005843 interleaved with A109613.
Row sum of superimposed binary filled triangle. - Craig Knecht, Aug 07 2015

Examples

			A005843: 0   2   4   6   8   10   12   14   16   18   20    22
A109613:   1   1   3   3   5    5    7    7    9    9    11    11
this   : 0 1 2 1 4 3 6 3 8 5 10 5 12 7 14 7 16 9 18 9 20 11 22 ... .
		

Crossrefs

Cf. A186422 (first differences), A186423 (partial sums), A240828 (row sum of superimposed binary triangle).

Programs

  • Haskell
    a186421 n = a186421_list !! n
    a186421_list = interleave [0,2..] $ rep [1,3..] where
       interleave (x:xs) ys = x : interleave ys xs
       rep (x:xs) = x : x : rep xs
    
  • Magma
    [IsEven(n) select n else 2*Floor(n/4)+1: n in [0..100]]; // Vincenzo Librandi, Jul 13 2015
    
  • Maple
    A186421:=n->n-(1-(-1)^n)*(n+(-1)^(n*(n+1)/2))/4: seq(A186421(n), n=0..100); # Wesley Ivan Hurt, Aug 07 2015
  • Mathematica
    Table[n - (1 - (-1)^n)*(n + I^(n (n + 1)))/4, {n, 0, 87}] (* or *)
    CoefficientList[Series[x (1 + 2 x + 2 x^3 + x^4)/((1 + x^2) (x - 1)^2 (1 + x)^2), {x, 0, 87}], x] (* or *)
    n = 88; Riffle[Range[0, n, 2], Flatten@ Transpose[{Range[1, n, 2], Range[1, n, 2]}]] (* Michael De Vlieger, Jul 14 2015 *)
  • Maxima
    makelist(n-(1-(-1)^n)*(n+%i^(n*(n+1)))/4, n, 0, 90); /* Bruno Berselli, Mar 04 2013 */
    
  • Python
    def A186421(n): return (n>>1)|1 if n&1 else n # Chai Wah Wu, Jan 31 2023

Formula

a(2*k) = 2*k, a(4*k+1) = a(4*k+3) = 2*k+1.
a(n) = n if n is even, else 2*floor(n/4)+1.
a(2*n-(2*k+1)) + a(2*n+2*k+1) = 2*n, 0 <= k < n.
a(n+2) = A109043(n) - a(n).
G.f.: x*(1+2*x+2*x^3+x^4) / ( (1+x^2)*(x-1)^2*(1+x)^2 ). - R. J. Mathar, Feb 23 2011
a(n) = n-(1-(-1)^n)*(n+i^(n(n+1)))/4, where i=sqrt(-1). - Bruno Berselli, Feb 23 2011
a(n) = a(n-2)+a(n-4)-a(n-6) for n>5. - Wesley Ivan Hurt, Aug 07 2015
E.g.f.: (x*cosh(x) + sin(x) + 2*x*sinh(x))/2. - Stefano Spezia, May 09 2021

Extensions

Edited by Bruno Berselli, Mar 04 2013
Showing 1-5 of 5 results.