A186575 Expansion of (1 + 2*x + 6*x^2)/(1 - x - x^2 - 2*x^3) in powers of x.
1, 3, 10, 15, 31, 66, 127, 255, 514, 1023, 2047, 4098, 8191, 16383, 32770, 65535, 131071, 262146, 524287, 1048575, 2097154, 4194303, 8388607, 16777218, 33554431, 67108863, 134217730, 268435455, 536870911, 1073741826, 2147483647, 4294967295
Offset: 0
Examples
G.f. = 1 + 3*x + 10*x^2 + 15*x^3 + 31*x^4 + 66*x^5 + 127*x^6 + 255*x^7 + ...
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- Gamaliel Cerda-Morales, A note on Modified Third-order Jacobsthal numbers, arXiv:1905.00725 [math.CO], 2019. See pp. 3-4.
- Vladimir Kruchinin, Composition of ordinary generating functions, arXiv:1009.2565 [math.CO], 2010.
- Evren Eyican Polatlı and Yüksel Soykan, On generalized third-order Jacobsthal numbers, Asian Res. J. of Math. (2021) Vol. 17, No. 2, 1-19, Article No. ARJOM.66022.
- Kai Wang, Closed Forms and Generating Functions For Power Sums, 2020.
- Index entries for linear recurrences with constant coefficients, signature (1,1,2).
Crossrefs
Cf. A099837.
Programs
-
Magma
R
:=PowerSeriesRing(Integers(), 35); Coefficients(R!( (1 + 2*x + 6*x^2)/(1 - x - x^2 - 2*x^3))); // Marius A. Burtea, Jan 31 2020 -
Mathematica
CoefficientList[Series[(1+2x+6x^2)/(1-x-x^2-2x^3),{x,0,40}],x] (* Harvey P. Dale, Mar 14 2011 *)
-
PARI
Vec((1 + 2*x + 6*x^2) / ((1 - 2*x)*(1 + x + x^2)) + O(x^40)) \\ Colin Barker, May 03 2019
-
PARI
polsym(polrecip(1 - x - x^2 - 2*x^3),44)[^1] \\ Joerg Arndt, Jun 23 2020
Formula
a(n+1) = n*Sum_{k=1..n} Sum_{j=n-3*k..k} 2^(k-j)*binomial(j,n-3*k+2*j)*binomial(k,j)/k.
G.f.: [log(1/(1 - x - x^2 - 2*x^3))]', (x + x^2 + 2*x^3)^k = Sum_{n>=k} Sum_{j=n-3*k..k} 2^(k-j)*binomial(j,n-3*k+2*j)*binomial(k,j)*x^n (see link).
a(n) = 2^(n+1) + A099837(n+1). - R. J. Mathar, Mar 18 2011
a(n) = a(n-1) + a(n-2) + 2*a(n-3) for n>2. - Colin Barker, May 03 2019
From Kai Wang, May 23 2020: (Start)
A077947(n) = (-8*a(n+3) + 27*a(n+2) - a(n+1))/147. (End)
Extensions
More terms from Harvey P. Dale, Mar 14 2011
Comments