cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A186575 Expansion of (1 + 2*x + 6*x^2)/(1 - x - x^2 - 2*x^3) in powers of x.

Original entry on oeis.org

1, 3, 10, 15, 31, 66, 127, 255, 514, 1023, 2047, 4098, 8191, 16383, 32770, 65535, 131071, 262146, 524287, 1048575, 2097154, 4194303, 8388607, 16777218, 33554431, 67108863, 134217730, 268435455, 536870911, 1073741826, 2147483647, 4294967295
Offset: 0

Views

Author

Vladimir Kruchinin, Feb 23 2011

Keywords

Comments

From Kai Wang, May 23 2020: (Start)
Let f(t) = t^3 + u*t^2 + v*t + w and {x,y,z} be the simple roots of f(t).
For n >= 0, let p(n) = x^n/((x-y)*(x-z)) + y^n/((y-x)*(y-z)) + z^n/((z-x)*(z-y)) and q(n) = x^n + y^n + z^n.
Then for n >= 0, q(n) = 3*p(n+2) + 2*u*p(n+1) + v*p(n).
In this case, f(t) = t^3 - t^2 - t - 2. q(n) = 3*p(n+2) - 2*p(n+1) - p(n).
p(n) = {0, 0, 1, 1, 2, 5, 9,...}, q(n) = {3, 1, 3, 10, 15, 31,...}.
a(n) = q(n+1), A077939(n) = p(n+2). (End)

Examples

			G.f. = 1 + 3*x + 10*x^2 + 15*x^3 + 31*x^4 + 66*x^5 + 127*x^6 + 255*x^7 + ...
		

Crossrefs

Cf. A099837.

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 35); Coefficients(R!( (1 + 2*x + 6*x^2)/(1 - x - x^2 - 2*x^3))); // Marius A. Burtea, Jan 31 2020
  • Mathematica
    CoefficientList[Series[(1+2x+6x^2)/(1-x-x^2-2x^3),{x,0,40}],x]  (* Harvey P. Dale, Mar 14 2011 *)
  • PARI
    Vec((1 + 2*x + 6*x^2) / ((1 - 2*x)*(1 + x + x^2)) + O(x^40)) \\ Colin Barker, May 03 2019
    
  • PARI
    polsym(polrecip(1 - x - x^2 - 2*x^3),44)[^1] \\ Joerg Arndt, Jun 23 2020
    

Formula

a(n+1) = n*Sum_{k=1..n} Sum_{j=n-3*k..k} 2^(k-j)*binomial(j,n-3*k+2*j)*binomial(k,j)/k.
G.f.: [log(1/(1 - x - x^2 - 2*x^3))]', (x + x^2 + 2*x^3)^k = Sum_{n>=k} Sum_{j=n-3*k..k} 2^(k-j)*binomial(j,n-3*k+2*j)*binomial(k,j)*x^n (see link).
a(n) = 2^(n+1) + A099837(n+1). - R. J. Mathar, Mar 18 2011
a(n) = a(n-1) + a(n-2) + 2*a(n-3) for n>2. - Colin Barker, May 03 2019
From Kai Wang, May 23 2020: (Start)
a(n) = 3*A077947(n+1) - 2*A077947(n) - A077947(n-1).
A077947(n) = (-8*a(n+3) + 27*a(n+2) - a(n+1))/147. (End)

Extensions

More terms from Harvey P. Dale, Mar 14 2011