cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A341905 a(n) = a(n-1) + a(n-2) + 2*a(n-3) with a(0) = 3, a(1) = 0, a(2) = 2.

Original entry on oeis.org

3, 0, 2, 8, 10, 22, 48, 90, 182, 368, 730, 1462, 2928, 5850, 11702, 23408, 46810, 93622, 187248, 374490, 748982, 1497968, 2995930, 5991862, 11983728, 23967450, 47934902, 95869808, 191739610, 383479222, 766958448, 1533916890, 3067833782, 6135667568, 12271335130
Offset: 0

Views

Author

Michael De Vlieger, Jun 04 2021

Keywords

Crossrefs

Programs

  • Maple
    a:= n-> (<<0|1|0>, <0|0|1>, <2|1|1>>^n. <<3, 0, 2>>)[1,1]:
    seq(a(n), n=0..34);  # Alois P. Heinz, Jun 04 2021
  • Mathematica
    LinearRecurrence[{1, 1, 2}, {3, 0, 2}, 35] (* or *)
    CoefficientList[Series[(-3 + 3 x + x^2)/(-1 + x + x^2 + 2 x^3), {x, 0, 34}], x]

Formula

G.f.: (-3 + 3*x + x^2)/(-1 + x + x^2 + 2*x^3).
a(n) = (10*2^(n-1) + 13*A049347(n) - 9*A079978(n+1) + 3)/7. - Greg Dresden, Jun 20 2021

A331890 a(n) = -a(n-1) - a(n-2) + 2*a(n-3) with a(0)=3, a(1)=-1, a(2)=-1.

Original entry on oeis.org

3, -1, -1, 8, -9, -1, 26, -43, 15, 80, -181, 131, 210, -703, 755, 368, -2529, 3671, -406, -8323, 16071, -8560, -24157, 64859, -57822, -55351, 242891, -303184, -50409, 839375, -1395334, 455141, 2618943, -5864752, 4156091, 6946547, -22832142, 24197777
Offset: 0

Views

Author

Wojciech Florek, Jan 30 2020

Keywords

Comments

a(n) is the reflected sequence (cf. A074058) of the generalized tribonacci sequence b(n) with b(0) = 3 and b(n) = A186575(n-1) for n > 0.

Crossrefs

Programs

  • Magma
    a:=[3,-1,-1]; [n le 3 select a[n] else -Self(n-1)-Self(n-2)+2*Self(n-3):n in [1..30]]; // Marius A. Burtea, Feb 02 2020
  • Mathematica
    LinearRecurrence[{-1,-1,2},{3,-1,-1},38] (* Stefano Spezia, Jan 31 2020 *)

Formula

G.f.: (3 + 2*x + x^2)/(1 + x + x^2 - 2*x^3).
a(n) = 3*A077975(n)+2*A077975(n-1)+A077975(n-2). - R. J. Mathar, Feb 28 2020

Extensions

Definition clarified by N. J. A. Sloane, Apr 23 2020
Showing 1-2 of 2 results.