cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A186739 a(0)=0, a(1)=0; for n>1, a(n) = a(n-1) + (n-2)*a(n-2) + 1.

Original entry on oeis.org

0, 0, 1, 2, 5, 12, 33, 94, 293, 952, 3297, 11866, 44837, 175364, 713409, 2993142, 12980869, 57878000, 265571905, 1249497906, 6029792197, 29770252412, 150366096353, 775541397006, 4083595516773, 21921047647912, 119927340050465, 667953531248266, 3786064372560357
Offset: 0

Views

Author

Olivier Gérard, Nov 02 2012

Keywords

Comments

a(n-1) is the number of times step Y5 is performed when the algorithm of exercise 7.2.1.2--101 in The Art of Computer Programming (volume 4A) is used to generate all involutions of order n. - Don Knuth, Feb 19 2015

References

  • D. E. Knuth, The Art of Computer Programming, Volume 4A, Addison-Wesley, 2011, pages 719-720.

Crossrefs

Cf. A000085.

Programs

  • Magma
    I:=[0,0,1,2]; [n le 4 select I[n] else 2*Self(n-1)+(n-4)*Self(n-2)-(n-4)*Self(n-3): n in [1..30]]; // Vincenzo Librandi, Dec 24 2012
  • Mathematica
    RecurrenceTable[{a[1] == 0, a[2] == 0, a[n] == a[n - 1] + (n - 2) a[n - 2] + 1}, a, {n, 30}] (* Bruno Berselli, Dec 24 2012; typo corrected by Don Knuth, Feb 19 2015 *)
    nxt[{n_,a_,b_}]:={n+1,b,b+a(n-1)+1}; NestList[nxt,{1,0,0},30][[;;,2]] (* Harvey P. Dale, Jul 22 2024 *)

Formula

a(n) = 2*a(n-1)+(n-3)*a(n-2)-(n-3)*a(n-3) with a(0)=a(1)=0, a(2)=1. - Vincenzo Librandi, Dec 24 2012
a(n) ~ sqrt(Pi)/2 * n^(n/2-1/2)*exp(sqrt(n)-n/2-1/4) * (1-5/(24*sqrt(n))). - Vaclav Kotesovec, Dec 26 2012
Sum a(n-1)z^n/n! = exp(z+z^2) erf(z/sqrt(2)). Therefore the asymptotic value of a(n-1) is sqrt(Pi/2) times the asymptotic value of t(n), the number of involutions [sequence A000085], with exponentially small relative error. - Don Knuth, Feb 19 2015

Extensions

More terms from Vincenzo Librandi, Dec 24 2012
Edited by Bruno Berselli, Dec 24 2012