A186749 a(n) = phi(n - phi(n) + 3).
2, 2, 2, 4, 2, 6, 2, 6, 2, 6, 2, 10, 2, 10, 4, 10, 2, 8, 2, 8, 4, 8, 2, 18, 4, 16, 4, 18, 2, 20, 2, 18, 8, 12, 6, 18, 2, 22, 6, 18, 2, 20, 2, 18, 8, 18, 2, 24, 4, 20, 10, 30, 2, 24, 6, 24, 8, 20, 2, 46, 2, 24, 8, 24, 8, 42, 2, 24, 12, 42, 2, 32, 2, 40, 18, 42
Offset: 1
Keywords
Examples
a(15) = 4, Since phi(15 - phi(15) + 3) = 4. Note that 15 is the product of twin primes and that a(15) = 4 is the arithmetic mean of the prime factors of 15: (3+5)/2 = 4.
Links
- Antti Karttunen, Table of n, a(n) for n = 1..65537
Programs
-
GAP
List([1..70],n->Phi(n-Phi(n)+3)); # Muniru A Asiru, Mar 04 2018
-
Magma
[EulerPhi(n-EulerPhi(n)+3): n in [1..100]]; // Vincenzo Librandi, Dec 08 2015
-
Maple
with(numtheory); seq( phi(k - phi(k) + 3), k=1..70);
-
Mathematica
Table[EulerPhi[n - EulerPhi[n] + 3], {n, 100}]
-
PARI
A186749(n) = eulerphi(n - eulerphi(n) + 3); \\ Antti Karttunen, Mar 04 2018
Comments