cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A186763 Number of increasing odd cycles in all permutations of {1,2,...,n}.

Original entry on oeis.org

0, 1, 2, 7, 28, 141, 846, 5923, 47384, 426457, 4264570, 46910271, 562923252, 7318002277, 102452031878, 1536780478171, 24588487650736, 418004290062513, 7524077221125234, 142957467201379447, 2859149344027588940, 60042136224579367741
Offset: 0

Views

Author

Emeric Deutsch, Feb 27 2011

Keywords

Comments

A cycle (b(1), b(2), ...) is said to be increasing if, when written with its smallest element in the first position, it satisfies b(1)
A cycle is said to be odd if it has an odd number of entries.

Examples

			a(3)=7 because in (1)(2)(3), (1)(23), (12)(3), (13)(2), (123), and (132) we have a total of 3+1+1+1+1+0=7 increasing odd cycles.
		

Programs

  • Maple
    g := sinh(z)/(1-z): gser := series(g, z = 0, 27): seq(factorial(n)*coeff(gser, z, n), n = 0 .. 21);
    # Alternatively:
    A186763 := n -> (exp(1)*GAMMA(1+n,1) - exp(-1)*GAMMA(1+n,-1))/2:
    seq(simplify(A186763(n)), n=0..21); # Peter Luschny, Dec 18 2017
  • Mathematica
    a=0;Table[a=n*a+(1/2)(1-(-1)^n),{n,0,30}] (* Vladimir Joseph Stephan Orlovsky, Apr 02 2011 *)
    CoefficientList[Series[Sinh[x]/(1-x), {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Oct 05 2013 *)

Formula

a(n) = Sum_{k>=0} k*A186761(n,k).
E.g.f.: (sinh z)/(1-z).
a(n) ~ n! * (exp(2)-1)*exp(-1)/2. - Vaclav Kotesovec, Oct 05 2013
a(n) = (exp(1)*Gamma(1+n,1) - exp(-1)*Gamma(1+n,-1))/2 = (A000522(n) - A000166(n))/2. - Peter Luschny, Dec 18 2017
a(n) = n! * Sum_{k=0..floor((n-1)/2)} 1 / (2*k+1)!. - Ilya Gutkovskiy, Jul 16 2021
D-finite with recurrence a(n) -n*a(n-1) -a(n-2) +(n-2)*a(n-3)=0. - R. J. Mathar, Jul 26 2022

A186766 Triangle read by rows: T(n,k) is the number of permutations of {1,2,...,n} having k nonincreasing odd cycles (0<=k<=floor(n/3)). A cycle (b(1), b(2), ...) is said to be increasing if, when written with its smallest element in the first position, it satisfies b(1)

Original entry on oeis.org

1, 1, 2, 5, 1, 20, 4, 77, 43, 472, 238, 10, 2585, 2385, 70, 21968, 16504, 1848, 157113, 189695, 15792, 280, 1724064, 1591082, 310854, 2800, 15229645, 21449481, 3100614, 137060, 204738624, 213397204, 59267252, 1583120, 15400, 2151199429, 3347368503, 676271024, 51981644, 200200
Offset: 0

Author

Emeric Deutsch, Feb 27 2011

Keywords

Comments

Row n has 1+floor(n/3) entries.
Sum of entries in row n is n!.
T(n,0) = A186767(n).
Sum(k*T(n,k),k>=0) = A186768(n).

Examples

			T(3,1)=1 because we have (132).
T(4,1)=4 because we have (1)(243), (143)(2), (142)(3), and (132)(4).
Triangle starts:
1;
1;
2;
5,1;
20,4;
77,43;
		

Crossrefs

Programs

  • Maple
    g := exp((1-t)*sinh(z))*(1+z)^((t-1)*1/2)/(1-z)^((t+1)*1/2): gser := simplify(series(g, z = 0, 16)): for n from 0 to 13 do P[n] := sort(expand(factorial(n)*coeff(gser, z, n))) end do: for n from 0 to 13 do seq(coeff(P[n], t, k), k = 0 .. floor((1/3)*n)) end do; # yields sequence in triangular form
    # second Maple program:
    b:= proc(n) option remember; expand(
          `if`(n=0, 1, add(b(n-j)*binomial(n-1, j-1)*
          `if`(j::even, (j-1)!, 1+x*((j-1)!-1)), j=1..n)))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n)):
    seq(T(n), n=0..14);  # Alois P. Heinz, Apr 13 2017
  • Mathematica
    b[n_] := b[n] = Expand[If[n == 0, 1, Sum[b[n-j]*Binomial[n-1, j-1]*If[ EvenQ[j], (j-1)!, 1+x*((j-1)!-1)], {j, 1, n}]]];
    T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 0, Exponent[p, x]}]][ b[n]];
    Table[T[n], {n, 0, 14}] // Flatten (* Jean-François Alcover, May 03 2017, after Alois P. Heinz *)

Formula

E.g.f.: G(t,z)=exp((1-t)sinh z)*(1+z)^{(t-1)/2}/(1-z)^{(t+1)/2}.
The 5-variate e.g.f. H(x,y,u,v,z) of permutations with respect to size (marked by z), number of increasing odd cycles (marked by x), number of increasing even cycles (marked by y), number of nonincreasing odd cycles (marked by u), and number of nonincreasing even cycles (marked by v), is given by
H(x,y,u,v,z)=exp(((x-u)sinh z + (y-v)(cosh z - 1))*(1+z)^{(u-v)/2}/(1-z)^{(u+v)/2}.
We have: G(t,z)=H(1,1,t,1,z).

A184958 Number of nonincreasing even cycles in all permutations of {1,2,...,n}. A cycle (b(1), b(2), ...) is said to be increasing if, when written with its smallest element in the first position, it satisfies b(1)

Original entry on oeis.org

0, 0, 0, 0, 5, 25, 269, 1883, 20103, 180927, 2172149, 23893639, 326640467, 4246326071, 65675585793, 985133786895, 17069814958319, 290186854291423, 5579050805341613, 106001965301490647, 2241684406438644939, 47075372535211543719
Offset: 0

Author

Emeric Deutsch, Feb 27 2011

Keywords

Examples

			a(4) = 5 because the only permutations of {1,2,3,4} having nonincreasing even cycles are (1243), (1324), (1342), (1423), and (1432).
		

Programs

  • Maple
    g := (1/2*(2*(1-cosh(z))-ln(1-z^2)))/(1-z): gser := series(g, z = 0, 27): seq(factorial(n)*coeff(gser, z, n), n = 0 .. 21);
  • Mathematica
    With[{nn=30},CoefficientList[Series[1/2(2(1-Cosh[x])-Log[1-x^2])/(1-x), {x,0,nn}],x]Range[0,nn]!] (* Harvey P. Dale, Oct 22 2011 *)
    Table[(n! HarmonicNumber[n] - HypergeometricPFQ[{1, -n}, {}, -1] + (-1)^(n + 1) HypergeometricPFQ[{1, -n}, {}, 1] + n! (2 + (-1)^n LerchPhi[-1, 1, 1 + n] - Log[2]))/2, {n, 0, 20}] (* Benedict W. J. Irwin, May 30 2016 *)

Formula

a(n) = Sum_{k>=0} k*A186769(n,k).
E.g.f.: (1/2) * (2*(1-cosh(z)) - log(1-z^2))/(1-z).
a(n) ~ n!/2 * (log(n/2) - 1/exp(1) + 2 - exp(1) + gamma), where gamma is the Euler-Mascheroni constant (A001620). - Vaclav Kotesovec, Oct 05 2013
a(n) = (n!*H(n)-2F0(1,-n;;-1) + (-1)^(n+1)*2F0(1,-n;;1)+n!*(2+(-1)^n*LerchPhi(-1,1,n+1)-log(2)))/2, where H(n) is the n-th harmonic number. - Benedict W. J. Irwin, May 30 2016
Showing 1-3 of 3 results.