cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A186947 a(n) = 4^n - n*2^n.

Original entry on oeis.org

1, 2, 8, 40, 192, 864, 3712, 15488, 63488, 257536, 1038336, 4171776, 16728064, 67002368, 268206080, 1073250304, 4293918720, 17177640960, 68714758144, 274867945472, 1099490656256, 4398002470912, 17592093769728, 70368551239680, 281474574057472, 1125899067981824
Offset: 0

Views

Author

Paul Barry, Mar 01 2011

Keywords

Comments

Binomial transform of A186948.
Second binomial transform of A186949.

Examples

			G.f. = 1 + 2*x + 8*x^2 + 40*x^3 + 192*x^4 + 864*x^5 + 3712*x^6 + ... - _Michael Somos_, Jul 18 2018
		

Crossrefs

Programs

  • Magma
    [4^n - n*2^n: n in [0..30]]; // G. C. Greubel, Aug 14 2018
  • Mathematica
    Table[4^n-n 2^n,{n,0,30}] (* or *) LinearRecurrence[{8,-20,16},{1,2,8},30] (* Harvey P. Dale, Apr 23 2017 *)
  • PARI
    {a(n) = 2^n * (2^n - n)}; /* Michael Somos, Jul 18 2018 */
    

Formula

G.f.: (1 - 6*x + 12*x^2)/((1 - 2*x)^2*(1 - 4*x)).
a(n) = 4*a(n-1) + 2^n*(n-2), n >= 1. - Vincenzo Librandi, Mar 13 2011
a(n) = 2^n*A000325(n) = 4^n*A002064(-n) for all n in Z. - Michael Somos, Jul 18 2018
From Elmo R. Oliveira, Sep 15 2024: (Start)
E.g.f.: exp(2*x)*(exp(2*x) - 2*x).
a(n) = 8*a(n-1) - 20*a(n-2) + 16*a(n-3) for n > 2. (End)