cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A187019 Coefficient of x^n in expansion of (1+n*x+(n+1)*x^2)^n.

Original entry on oeis.org

1, 1, 10, 99, 1366, 23525, 484436, 11582375, 314830342, 9576682569, 322014499852, 11851803991115, 473634489404220, 20414267521982893, 943592267071798696, 46545155813085562575, 2439857423310573714758
Offset: 0

Views

Author

Emanuele Munarini, Mar 02 2011

Keywords

Crossrefs

Programs

  • Magma
    P:=PolynomialRing(Integers()); [ Coefficients((1+n*x+(n+1)*x^2)^n)[n+1]: n in [0..22] ]; // Klaus Brockhaus, Mar 03 2011
    
  • Mathematica
    Flatten[{1,Table[Sum[Binomial[n, k]*Binomial[n-k, n-2*k]*n^(n-2*k)*(n+1)^k, {k,0,Floor[n/2]}],{n,1,20}]}] (* Vaclav Kotesovec, Apr 18 2014 *)
    Flatten[{1,Table[n^n * Hypergeometric2F1[1/2-n/2,-n/2,1,4*(1+n)/n^2],{n,1,20}]}] (* Vaclav Kotesovec, Apr 18 2014 *)
  • Maxima
    a(n):=coeff(expand((1+n*x+(n+1)*x^2)^n),x,n);
    makelist(a(n),n,0,12);
    
  • PARI
    a(n) = polcoef((1+n*x+(n+1)*x^2)^n, n); \\ Michel Marcus, Jun 01 2020

Formula

a(n) = [x^n] (1+n*x+(n+1)*x^2)^n.
a(n) = Sum (C(n, k)*C(n-k, n-2*k)*n^(n-2*k)*(n+1)^k, k=0..floor(n/2)).
a(n) ~ exp(2*sqrt(n)-2) * n^(n-1/4) / (2*sqrt(Pi)). - Vaclav Kotesovec, Apr 18 2014
a(n) = n! * [x^n] exp(n*x) * BesselI(0,2*sqrt(n + 1)*x). - Ilya Gutkovskiy, Jun 01 2020