cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A187057 Primes p such that the polynomial x^2 + x + p generates only primes for x = 0, ..., 4.

Original entry on oeis.org

11, 17, 41, 347, 641, 1277, 1427, 1607, 2687, 3527, 4001, 4637, 4931, 13901, 19421, 21011, 21557, 22271, 23741, 26681, 26711, 27941, 28277, 31247, 32057, 33617, 43781, 45821, 55331, 55661, 55817, 68207, 68897, 71327, 91571, 97367, 113147, 128657, 128981
Offset: 1

Views

Author

Jonathan Vos Post, Mar 03 2011

Keywords

Comments

From Weber, p. 15.

Examples

			a(1) = 11 because x^2 + x + 11 generates 0^2 + 0 + 11; 1^2 + 1 + 11 = 13; 2^2 + 2 + 11 = 17; 3^2 + 3 + 11 = 23; 4^2 + 4 + 11 = 31, all primes.
		

Programs

  • Maple
    q:= p-> andmap(x-> isprime(x^2+x+p), [$0..4]):
    select(q, [i*6+5$i=0..25000])[];  # Alois P. Heinz, Jun 16 2025
  • Mathematica
    okQ[n_] := And @@ PrimeQ[Table[i^2 + i + n, {i, 0, 4}]]; Select[Range[10000], okQ] (* T. D. Noe, Mar 03 2011 *)
    Select[Prime[Range[12500]],AllTrue[#+{2,6,12,20},PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Aug 11 2019 *)
  • PARI
    forprime(p=2, 1e4, if(isprime(p+2)&&isprime(p+6)&&isprime(p+12) &&isprime(p+20), print1(p", "))) \\ Charles R Greathouse IV, Mar 04 2012