A187154 Expansion of psi(x^4) / phi(-x) in powers of x where phi(), psi() are Ramanujan theta functions.
1, 2, 4, 8, 15, 26, 44, 72, 114, 178, 272, 408, 605, 884, 1276, 1824, 2580, 3616, 5028, 6936, 9498, 12922, 17468, 23472, 31369, 41700, 55156, 72616, 95172, 124202, 161436, 209016, 269616, 346562, 443952, 566856, 721530, 915642, 1158608, 1461968, 1839789
Offset: 0
Examples
1 + 2*x + 4*x^2 + 8*x^3 + 15*x^4 + 26*x^5 + 44*x^6 + 72*x^7 + 114*x^8 + ... q + 2*q^3 + 4*q^5 + 8*q^7 + 15*q^9 + 26*q^11 + 44*q^13 + 72*q^15 + 114*q^17 + ...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Michael Somos, Introduction to Ramanujan theta functions
- Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
Programs
-
Mathematica
nmax = 50; CoefficientList[Series[Product[(1 + x^k)^2 * (1 + x^(2*k)) * (1 + x^(4*k))^2, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Sep 10 2015 *) a[n_]:= SeriesCoefficient[EllipticTheta[2, 0, q^2]/(2*Sqrt[q]* EllipticTheta[3, 0, -q]), {q, 0, n}]; Table[A187154[n], {n, 0, 50}] (* G. C. Greubel, Dec 04 2017 *)
-
PARI
{a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A) * eta(x^8 + A)^2 / (eta(x + A)^2 * eta(x^4 + A)), n))}
Formula
Expansion of q^(-1/2) * eta(q^2) * eta(q^8)^2 / (eta(q)^2 * eta(q^4)) in powers of q.
Euler transform of period 8 sequence [ 2, 1, 2, 2, 2, 1, 2, 0, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (32 t)) = 32^(-1/2) g(t) where q = exp(2 Pi i t) and g() is g.f. for A093085.
a(n) ~ exp(sqrt(n)*Pi)/(16*n^(3/4)). - Vaclav Kotesovec, Sep 10 2015
Comments