A187203 The bottom entry in the absolute difference triangle of the divisors of n.
1, 1, 2, 1, 4, 2, 6, 1, 4, 0, 10, 1, 12, 2, 8, 1, 16, 4, 18, 1, 8, 6, 22, 2, 16, 8, 8, 3, 28, 4, 30, 1, 8, 12, 24, 1, 36, 14, 8, 0, 40, 4, 42, 3, 20, 18, 46, 1, 36, 0, 8, 3, 52, 8, 36, 0, 8, 24, 58, 3, 60, 26, 4, 1, 40, 12, 66, 3, 8, 2, 70, 4, 72, 32, 32, 3
Offset: 1
Examples
a(18) = 4 because the divisors of 18 are 1, 2, 3, 6, 9, 18, and the absolute difference triangle of the divisors is: 1 . 2 . 3 . 6 . 9 . 18 . 1 . 1 . 3 . 3 . 9 . . 0 . 2 . 0 . 6 . . . 2 . 2 . 6 . . . . 0 . 4 . . . . . 4 with bottom entry a(18) = 4. Note that A187202(18) = 12.
Links
- T. D. Noe, Table of n, a(n) for n = 1..10000
Programs
-
Haskell
a187203 = head . head . dropWhile ((> 1) . length) . iterate diff . divs where divs n = filter ((== 0) . mod n) [1..n] diff xs = map abs $ zipWith (-) (tail xs) xs -- Reinhard Zumkeller, Aug 02 2011
-
Mathematica
Table[d = Divisors[n]; While[Length[d] > 1, d = Abs[Differences[d]]]; d[[1]], {n, 100}] (* T. D. Noe, Aug 01 2011 *) Table[Nest[Abs[Differences[#]]&,Divisors[n],DivisorSigma[0,n]-1],{n,100}]//Flatten (* Harvey P. Dale, Nov 07 2022 *)
-
PARI
A187203(n)={ for(i=2,#n=divisors(n), n=abs(vecextract(n,"^1")-vecextract(n,"^-1"))); n[1]} \\ M. F. Hasler, Aug 01 2011
Extensions
Edited by Omar E. Pol, May 14 2016
Comments