A187202
The bottom entry in the difference table of the divisors of n.
Original entry on oeis.org
1, 1, 2, 1, 4, 2, 6, 1, 4, 0, 10, 1, 12, -2, 8, 1, 16, 12, 18, -11, 8, -6, 22, -12, 16, -8, 8, -3, 28, 50, 30, 1, 8, -12, 28, -11, 36, -14, 8, -66, 40, 104, 42, 13, 24, -18, 46, -103, 36, -16, 8, 21, 52, 88, 36, 48, 8, -24, 58, -667, 60, -26, -8, 1, 40, 72
Offset: 1
a(18) = 12 because the divisors of 18 are 1, 2, 3, 6, 9, 18, and the difference triangle of the divisors is:
1 . 2 . 3 . 6 . 9 . 18
. 1 . 1 . 3 . 3 . 9
. . 0 . 2 . 0 . 6
. . . 2 .-2 . 6
. . . .-4 . 8
. . . . . 12
with bottom entry a(18) = 12.
Note that A187203(18) = 4.
-
a187202 = head . head . dropWhile ((> 1) . length) . iterate diff . divs
where divs n = filter ((== 0) . mod n) [1..n]
diff xs = zipWith (-) (tail xs) xs
-- Reinhard Zumkeller, Aug 02 2011
-
f:=proc(n) local k,d,lis; lis:=divisors(n); d:=nops(lis);
add( (-1)^k*binomial(d-1,k)*lis[d-k], k=0..d-1); end;
[seq(f(n),n=1..100)]; # N. J. A. Sloane, May 01 2016
-
Table[d = Divisors[n]; Differences[d, Length[d] - 1][[1]], {n, 100}] (* T. D. Noe, Aug 01 2011 *)
-
A187202(n)={ for(i=2,#n=divisors(n), n=vecextract(n,"^1")-vecextract(n,"^-1")); n[1]} \\ M. F. Hasler, Aug 01 2011
A187215
Sum of the elements of the absolute difference table of the divisors of n.
Original entry on oeis.org
1, 4, 6, 11, 10, 21, 14, 26, 25, 31, 22, 52, 26, 45, 54, 57, 34, 82, 38, 82, 72, 73, 46, 119, 71, 87, 90, 108, 58, 161, 62, 120, 108, 115, 134, 181, 74, 129, 126, 193, 82, 221, 86, 172, 218, 157, 94, 252, 141, 190, 162, 204, 106, 285, 202, 233
Offset: 1
For n = 14 the divisors of 14 are 1, 2, 7, 14, and the absolute difference triangle of the divisors is
1 . 2 . 7 . 14
. 1 . 5 . 7
. . 4 . 2
. . . 2
The sum of all elements of the triangle is 1 + 2 + 7 + 14 + 1 + 5 + 7 + 4 + 2 + 2 = 45, so a(14) = 45.
-
with(numtheory):
DD:= l-> [seq(abs(l[i]-l[i-1]), i=2..nops(l))]:
a:= proc(n) local l;
l:= sort([divisors(n)[]], `>`);
add(j, j=[seq((DD@@i)(l)[], i=0..nops(l)-1)]);
end:
seq(a(n), n=1..100); # Alois P. Heinz, Aug 02 2011
-
Table[Total@ Flatten@ NestWhileList[Abs@ Differences@ # &, Divisors@ n, Length@ # > 1 &], {n, 56}] (* Michael De Vlieger, May 18 2016 *)
A187204
Numbers n such that the bottom entry in the difference table of the divisors of n is 0.
Original entry on oeis.org
10, 171, 1947, 2619, 265105, 478834027, 974622397, 11373118351
Offset: 1
10 has divisors 1, 2, 5, 10. The third difference of these numbers is 0. This is the only possible number having 2 prime factors of the form p*q. The other terms have factorization 171 = 3^2*19, 1947 = 3*11*59, 2619 = 3^3*97, and 265105 = 5*37*1433.
-
import Data.List (elemIndices)
a187204 n = a187204_list !! (n-1)
a187204_list = map (+ 1) $ elemIndices 0 $ map a187202 [1..]
-- Reinhard Zumkeller, Aug 02 2011
-
t = {}; Do[d = Divisors[n]; If[Differences[d, Length[d]-1] == {0}, AppendTo[t, n]], {n, 10^4}]; t (* T. D. Noe, Aug 01 2011 *)
-
is(n) = my(d=divisors(n)); !sum(i=1, #d, binomial(#d-1,i-1)*d[i]*(-1)^i) \\ David A. Corneth, Apr 08 2017
A187205
Numbers such that the last of the absolute differences of divisors is 0.
Original entry on oeis.org
10, 40, 50, 56, 104, 130, 136, 160, 170, 171, 224, 230, 232, 250, 290, 310, 312, 370, 392, 410, 430, 459, 470, 520, 530, 560, 590, 610, 624, 640, 648, 670, 710, 730, 790, 830, 890, 896, 970, 1000, 1010, 1030, 1070, 1088, 1090, 1130, 1160, 1216, 1218, 1221
Offset: 1
A187207
Irregular triangle read by rows in which row n lists the k=A000005(n) divisors of n in decreasing order, followed by the lists of their absolute differences up to order k-1.
Original entry on oeis.org
1, 2, 1, 1, 3, 1, 2, 4, 2, 1, 2, 1, 1, 5, 1, 4, 6, 3, 2, 1, 3, 1, 1, 2, 0, 2, 7, 1, 6, 8, 4, 2, 1, 4, 2, 1, 2, 1, 1, 9, 3, 1, 6, 2, 4, 10, 5, 2, 1, 5, 3, 1, 2, 2, 0, 11, 1, 10, 12, 6, 4, 3, 2, 1, 6, 2, 1, 1, 1, 4, 1, 0, 0, 3, 1, 0, 2, 1, 1, 13, 1, 12, 14, 7, 2, 1, 7, 5, 1, 2, 4, 2
Offset: 1
Triangle begins:
[1];
[2, 1], [1];
[3, 1], [2];
[4, 2, 1], [2, 1], [1];
[5, 1], [4];
[6, 3, 2, 1], [3, 1, 1], [2, 0], [2];
[7, 1], [6];
[8, 4, 2, 1], [4, 2, 1], [2, 1], [1];
[9, 3, 1], [6, 2], [4];
[10, 5, 2, 1], [5, 3, 1], [2, 2], [0];
The terms of each row can form a regular triangle, for example row 10:
10, 5, 2, 1;
. 5, 3, 1;
. 2, 2;
. 0;
-
with(numtheory):
DD:= l-> [seq(abs(l[i]-l[i-1]), i=2..nops(l))]:
T:= proc(n) local l;
l:= sort([divisors(n)[]], `>`);
seq((DD@@i)(l)[], i=0..nops(l)-1);
end:
seq(T(n), n=1..20); # Alois P. Heinz, Aug 03 2011
-
row[n_] := (dd = Divisors[n]; Table[Differences[dd, k] // Reverse // Abs, {k, 0, Length[dd]-1}]); Table[row[n], {n, 1, 20}] // Flatten (* Jean-François Alcover, May 18 2016 *)
A272121
Absolute difference table of the divisors of the positive integers (with every table read by antidiagonals downwards).
Original entry on oeis.org
1, 1, 2, 1, 1, 3, 2, 1, 2, 1, 4, 2, 1, 1, 5, 4, 1, 2, 1, 3, 1, 0, 6, 3, 2, 2, 1, 7, 6, 1, 2, 1, 4, 2, 1, 8, 4, 2, 1, 1, 3, 2, 9, 6, 4, 1, 2, 1, 5, 3, 2, 10, 5, 2, 0, 1, 11, 10, 1, 2, 1, 3, 1, 0, 4, 1, 0, 0, 6, 2, 1, 1, 1, 12, 6, 4, 3, 2, 1, 1, 13, 12, 1, 2, 1, 7, 5, 4, 14, 7, 2, 2, 1, 3, 2, 5, 2, 0, 15, 10, 8, 8
Offset: 1
The tables of the first nine positive integers are
1; 1, 2; 1, 3; 1, 2, 4; 1, 5; 1, 2, 3, 6; 1, 7; 1, 2, 4, 8; 1, 3, 9;
1; 2; 1, 2; 4; 1, 1, 3; 6; 1, 2, 4; 2, 6;
1; 0, 2; 1, 2; 4;
2; 1;
For n = 18 the absolute difference table of the divisors of 18 is
1, 2, 3, 6, 9, 18;
1, 1, 3, 3, 9;
0, 2, 0, 6;
2, 2, 6;
0, 4;
4;
This table read by antidiagonals downwards gives the finite subsequence [1], [2, 1], [3, 1, 0], [6, 3, 2, 2], [9, 3, 0, 2, 0], [18, 9, 6, 6, 4, 4].
-
Table[Table[#[[m - k + 1, k]], {m, Length@ #}, {k, m, 1, -1}] &@ NestWhileList[Abs@ Differences@ # &, Divisors@ n, Length@ # > 1 &], {n, 15}] // Flatten (* Michael De Vlieger, Jun 26 2016 *)
A273104
Absolute difference table of the divisors of the positive integers.
Original entry on oeis.org
1, 1, 2, 1, 1, 3, 2, 1, 2, 4, 1, 2, 1, 1, 5, 4, 1, 2, 3, 6, 1, 1, 3, 0, 2, 2, 1, 7, 6, 1, 2, 4, 8, 1, 2, 4, 1, 2, 1, 1, 3, 9, 2, 6, 4, 1, 2, 5, 10, 1, 3, 5, 2, 2, 0, 1, 11, 10, 1, 2, 3, 4, 6, 12, 1, 1, 1, 2, 6, 0, 0, 1, 4, 0, 1, 3, 1, 2, 1, 1, 13, 12, 1, 2, 7, 14, 1, 5, 7, 4, 2, 2, 1, 3, 5, 15, 2, 2, 10, 0, 8, 8
Offset: 1
For n = 18 the divisors of 18 are 1, 2, 3, 6, 9, 18, so the absolute difference triangle of the divisors of 18 is
1 . 2 . 3 . 6 . 9 . 18
. 1 . 1 . 3 . 3 . 9
. . 0 . 2 . 0 . 6
. . . 2 . 2 . 6
. . . . 0 . 4
. . . . . 4
and the 18th slice is
1, 2, 3, 6, 9, 18;
1, 1, 3, 3, 9;
0, 2, 0, 6;
2, 2, 6;
0, 4;
4;
The tetrahedron begins:
1;
1, 2;
1;
1, 3;
2;
1, 2, 4;
1, 2;
1;
...
This is also an irregular triangle T(n,r) read by rows in which row n lists the absolute difference triangle of the divisors of n flattened.
Row lengths are the terms of A184389. Row sums give A187215.
Triangle begins:
1;
1, 2, 1;
1, 3, 2;
1, 2, 4, 1, 2, 1;
...
-
Table[Drop[FixedPointList[Abs@ Differences@ # &, Divisors@ n], -2], {n, 15}] // Flatten (* Michael De Vlieger, May 16 2016 *)
A273132
Absolute difference table of the divisors of the positive integers (with every table read by antidiagonals upwards).
Original entry on oeis.org
1, 1, 1, 2, 1, 2, 3, 1, 1, 2, 1, 2, 4, 1, 4, 5, 1, 1, 2, 0, 1, 3, 2, 2, 3, 6, 1, 6, 7, 1, 1, 2, 1, 2, 4, 1, 2, 4, 8, 1, 2, 3, 4, 6, 9, 1, 1, 2, 2, 3, 5, 0, 2, 5, 10, 1, 10, 11, 1, 1, 2, 0, 1, 3, 0, 0, 1, 4, 1, 1, 1, 2, 6, 1, 2, 3, 4, 6, 12, 1, 12, 13, 1, 1, 2, 4, 5, 7, 2, 2, 7, 14, 1, 2, 3, 0, 2, 5, 8, 8, 10, 15
Offset: 1
The tables of the first nine positive integers are
1; 1, 2; 1, 3; 1, 2, 4; 1, 5; 1, 2, 3, 6; 1, 7; 1, 2, 4, 8; 1, 3, 9;
1; 2; 1, 2; 4; 1, 1, 3; 6; 1, 2, 4; 2, 6;
1; 0, 2; 1, 2; 4;
2; 1;
For n = 18 the absolute difference table of the divisors of 18 is
1, 2, 3, 6, 9, 18;
1, 1, 3, 3, 9;
0, 2, 0, 6;
2, 2, 6;
0, 4;
4;
This table read by antidiagonals upwards gives the finite subsequence [1], [1, 2], [0, 1, 3], [2, 2, 3, 6], [0, 2, 0, 3, 9], [4, 4, 6, 6, 9, 18].
-
Table[Table[#[[m - k + 1, k]], {m, Length@ #}, {k, m}] &@ NestWhileList[Abs@ Differences@ # &, Divisors@ n, Length@ # > 1 &], {n, 15}] // Flatten (* Michael De Vlieger, Jun 26 2016 *)
A187208
Numbers such that the last of the absolute differences of divisors is 1.
Original entry on oeis.org
1, 2, 4, 8, 12, 16, 20, 32, 36, 48, 64, 80, 108, 112, 128, 156, 192, 204, 220, 252, 256, 260, 272, 304, 320, 324, 368, 396, 448, 476, 484, 512, 544, 608, 656, 660, 688, 768, 972, 1008, 1024, 1044, 1120, 1184, 1248, 1280, 1300, 1332, 1476, 1764, 1792, 1908
Offset: 1
-
import Data.List (elemIndices)
a187208 n = a187208_list !! (n-1)
a187208_list = map (+ 1) $ elemIndices 1 $ map a187203 [1..]
-- Reinhard Zumkeller, Aug 02 2011
-
lad1Q[n_]:=Nest[Abs[Differences[#]]&,Divisors[n],DivisorSigma[0,n]-1]=={1}; Select[Range[2000],lad1Q] (* Harvey P. Dale, Nov 07 2022 *)
A274531
Irregular triangle read by rows: T(n,k) = sum of the elements of the k-th row of the absolute difference table of the divisors of n.
Original entry on oeis.org
1, 3, 1, 4, 2, 7, 3, 1, 6, 4, 12, 5, 2, 2, 8, 6, 15, 7, 3, 1, 13, 8, 4, 18, 9, 4, 0, 12, 10, 28, 11, 5, 4, 3, 1, 14, 12, 24, 13, 6, 2, 24, 14, 8, 8, 31, 15, 7, 3, 1, 18, 16, 39, 17, 8, 10, 4, 4, 20, 18, 42, 19, 11, 4, 5, 1, 32, 20, 12, 8, 36, 21, 10, 6, 24, 22, 60, 23, 11, 10, 6, 5, 2, 2, 31, 24, 16, 42, 25, 12, 8
Offset: 1
Triangle begins:
1;
3, 1;
4, 2;
7, 3, 1;
6, 4;
12, 5, 2, 2;
8, 6;
15, 7, 3, 1;
13, 8, 4;
18, 9, 4, 0;
12, 10;
28, 11, 5, 4, 3, 1;
14, 12;
24, 13, 6, 2;
24, 14, 8, 8;
31, 15, 7, 3, 1;
18, 16;
39, 17, 8, 10, 4, 4;
20, 18;
42, 19, 11, 4, 5, 1;
32, 20, 12, 8;
36, 21, 10, 6;
24, 22;
60, 23, 11, 10, 6, 5, 2, 2;
31, 24, 16;
42, 25, 12, 8;
...
For n = 18 the divisors of 18 are 1, 2, 3, 6, 9, 18, and the absolute difference triangle of the divisors is
1, 2, 3, 6, 9, 18;
1, 1, 3, 3, 9;
0, 2, 0, 6;
2, 2, 6;
0, 4;
4;
The row sums give [39, 17, 8, 10, 4, 4] which is also the 18th row of the irregular triangle.
-
Map[Total, #, {2}] &@ Table[NestWhileList[Abs@ Differences@ # &, #, Length@ # > 1 &] &@ Divisors@ n, {n, 26}] // Flatten (* Michael De Vlieger, Jun 27 2016 *)
Showing 1-10 of 16 results.
Comments