cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 26 results. Next

A242393 Records in A187202 by index.

Original entry on oeis.org

1, 3, 5, 7, 11, 13, 17, 19, 23, 29, 30, 42, 90, 132, 150, 156, 168, 240, 360, 420, 756, 924, 960, 1260, 2160, 2520, 4620, 5040, 6720, 7560, 14280, 16380, 18480, 20160, 31680, 35280, 41580, 45360, 50400, 65520, 98280, 110880, 171360, 226800, 249480, 257040, 262080, 277200, 332640
Offset: 1

Views

Author

Robert G. Wilson v, May 12 2014

Keywords

Comments

The first nine odd primes are present, and then only (very) abundant numbers.

Examples

			The final or last difference of 30 is 50 = A187202(30). The next higher value is 104 which occurs at 42, A187202(42) = 104.
		

Crossrefs

Cf. A187202.

Programs

  • Mathematica
    f[n_] := (dvr = Divisors@ n; Differences[dvr, Length@ dvr - 1][[1]]); k = 1; lst = {}; mx = 0; While[k < 100000001, If[ f@ k > mx, mx = f@ k; Print[{k, mx}]; AppendTo[lst, {k, mx}]]; k++]; Transpose[ lst][[1]]

A272374 Numbers n such that A187202(n) is <= 0.

Original entry on oeis.org

10, 14, 20, 22, 24, 26, 28, 34, 36, 38, 40, 46, 48, 50, 58, 60, 62, 63, 70, 74, 80, 82, 84, 86, 94, 96, 98, 99, 100, 105, 106, 117, 118, 120, 122, 134, 136, 138, 140, 142, 146, 152, 153, 154, 158, 160, 166, 170, 171, 174, 178, 180, 182, 184, 186, 189, 190, 192, 194, 196, 198, 200, 202, 206, 208, 214
Offset: 1

Views

Author

Robert G. Wilson v, Apr 28 2016

Keywords

Comments

Odd terms: 63, 99, 105, 117, 153, 171, 189, ..., .
Indices n where A187202(n) =0 are 10, 171, 1947, 2619, 265105, ...- R. J. Mathar, May 06 2016

Crossrefs

Programs

  • Mathematica
    f[n_] := Block[{d = Divisors@ n}, Differences[d, Length@ d - 1][[1]]]; Select[ Range@ 215, f@# < 1&]

Extensions

Edited by N. J. A. Sloane, May 01 2016

A272375 Negative records in A187202 by index.

Original entry on oeis.org

1, 10, 14, 20, 24, 38, 40, 48, 60, 84, 120, 180, 264, 300, 396, 432, 504, 540, 630, 720, 840, 1320, 2184, 2400, 2772, 3024, 3120, 3360, 3780, 3960, 5940, 6840, 7200, 8400, 9240, 10080, 12600, 15120, 21840, 22680, 25200, 27720, 30240, 40320, 52920, 55440, 83160, 128520, 131040, 138600, 166320, 196560, 221760
Offset: 1

Views

Author

Robert G. Wilson v, Apr 28 2016

Keywords

Comments

Often a(n)/2 is a member of A242393.
Search limit: 8300000000.

Crossrefs

Programs

  • Mathematica
    f[n_] := (dvr = Divisors@ n; Differences[dvr, Length@ dvr - 1][[1]]); lst = {}; k = 1; mx = 2; While[k < 1000001, a = f@ k; If[a < mx, mx = a; AppendTo[lst, k]]; k++]

A187203 The bottom entry in the absolute difference triangle of the divisors of n.

Original entry on oeis.org

1, 1, 2, 1, 4, 2, 6, 1, 4, 0, 10, 1, 12, 2, 8, 1, 16, 4, 18, 1, 8, 6, 22, 2, 16, 8, 8, 3, 28, 4, 30, 1, 8, 12, 24, 1, 36, 14, 8, 0, 40, 4, 42, 3, 20, 18, 46, 1, 36, 0, 8, 3, 52, 8, 36, 0, 8, 24, 58, 3, 60, 26, 4, 1, 40, 12, 66, 3, 8, 2, 70, 4, 72, 32, 32, 3
Offset: 1

Views

Author

Omar E. Pol, Aug 01 2011

Keywords

Comments

Note that if n is prime then a(n) = n - 1.
Where records occurs gives the odd noncomposite numbers (A006005).
First differs from A187202 at a(14).
It is important to note that at each step in the process, the absolute differences are taken, and not just at the end. This sequence is therefore not abs(A187202) as I mistakenly assumed at first. - Alonso del Arte, Aug 01 2011

Examples

			a(18) = 4 because the divisors of 18 are 1, 2, 3, 6, 9, 18, and the absolute difference triangle of the divisors is:
  1 . 2 . 3 . 6 . 9 . 18
  . 1 . 1 . 3 . 3 . 9
  . . 0 . 2 . 0 . 6
  . . . 2 . 2 . 6
  . . . . 0 . 4
  . . . . . 4
with bottom entry a(18) = 4.
Note that A187202(18) = 12.
		

Crossrefs

Programs

  • Haskell
    a187203 = head . head . dropWhile ((> 1) . length) . iterate diff . divs
       where divs n = filter ((== 0) . mod n) [1..n]
             diff xs = map abs $ zipWith (-) (tail xs) xs
    -- Reinhard Zumkeller, Aug 02 2011
  • Mathematica
    Table[d = Divisors[n]; While[Length[d] > 1, d = Abs[Differences[d]]]; d[[1]], {n, 100}] (* T. D. Noe, Aug 01 2011 *)
    Table[Nest[Abs[Differences[#]]&,Divisors[n],DivisorSigma[0,n]-1],{n,100}]//Flatten (* Harvey P. Dale, Nov 07 2022 *)
  • PARI
    A187203(n)={ for(i=2,#n=divisors(n), n=abs(vecextract(n,"^1")-vecextract(n,"^-1"))); n[1]}  \\ M. F. Hasler, Aug 01 2011
    

Extensions

Edited by Omar E. Pol, May 14 2016

A273102 Difference table of the divisors of the positive integers.

Original entry on oeis.org

1, 1, 2, 1, 1, 3, 2, 1, 2, 4, 1, 2, 1, 1, 5, 4, 1, 2, 3, 6, 1, 1, 3, 0, 2, 2, 1, 7, 6, 1, 2, 4, 8, 1, 2, 4, 1, 2, 1, 1, 3, 9, 2, 6, 4, 1, 2, 5, 10, 1, 3, 5, 2, 2, 0, 1, 11, 10, 1, 2, 3, 4, 6, 12, 1, 1, 1, 2, 6, 0, 0, 1, 4, 0, 1, 3, 1, 2, 1, 1, 13, 12, 1, 2, 7, 14, 1, 5, 7, 4, 2, -2, 1, 3, 5, 15, 2, 2, 10, 0, 8, 8
Offset: 1

Views

Author

Omar E. Pol, May 15 2016

Keywords

Comments

This is an irregular tetrahedron T(n,j,k) read by rows in which the slice n lists the elements of the rows of the difference triangle of the divisors of n (including the divisors of n).
The first row of the slice n is also the n-th row of the triangle A027750.
The bottom entry of the slice n is A187202(n).
The sum of the elements of the slice n is A273103(n).
For another version see A273104, from which differs at a(92).
From David A. Corneth, May 20 2016: (Start)
Each element of the difference table of the divisors of n can be expressed in terms of the divisors of n and use of Pascal's triangle. Suppose a, b, c, d and e are the divisors of n. Then the difference table is as follows (rotated for ease of reading):
a
. . b-a
b . . . . c-2b+a
. . c-b . . . . . d-3c+3b-a
c . . . . d-2c+b . . . . . . e-4d+6c-4b+a
. . d-c . . . . . e-3d+3c-b
d . . . . e-2d+c
. . e-d
e
From here we can see Pascal's triangle occurring. Induction can be used to show that it's the case in general.
(End)

Examples

			For n = 18 the divisors of 18 are 1, 2, 3, 6, 9, 18, so the difference triangle of the divisors of 18 is
  1 . 2 . 3 . 6 . 9 . 18
    1 . 1 . 3 . 3 . 9
      0 . 2 . 0 . 6
        2 .-2 . 6
         -4 . 8
           12
and the 18th slice is
  1, 2, 3, 6, 9, 18;
  1, 1, 3, 3, 9;
  0, 2, 0, 6;
  2,-2, 6;
  -4, 8;
  12;
The tetrahedron begins:
  1;
  1, 2;
  1;
  1, 3;
  2;
  1, 2, 4;
  1, 2;
  1;
  ...
This is also an irregular triangle T(n,r) read by rows in which row n lists the difference triangle of the divisors of n flattened. Row lengths are the terms of A184389. Row sums give A273103.
Triangle begins:
  1;
  1, 2, 1;
  1, 3, 2;
  1, 2, 4, 1, 2, 1;
  ...
		

Crossrefs

Programs

  • Mathematica
    Table[Drop[FixedPointList[Differences, Divisors@ n], -2], {n, 15}] // Flatten (* Michael De Vlieger, May 16 2016 *)
  • Sage
    def A273102_DTD(n): # DTD = Difference Table of Divisors
        D = divisors(n)
        T = matrix(ZZ, len(D))
        for (m, d) in enumerate(D):
            T[0, m] = d
            for k in range(m-1, -1, -1) :
                T[m-k, k] = T[m-k-1, k+1] - T[m-k-1, k]
        return [T.row(k)[:len(D)-k] for k in range(len(D))]
    # Keeps the rows of the DTD, for instance
    # A273102_DTD(18)[1] = 1,1,3,3,9 (see the example above).
    for n in range(1,19): print(A273102_DTD(n)) # Peter Luschny, May 18 2016

A200154 T(n,k) = number of 0..k arrays x(0..n-1) of n elements with zero (n-1)-st difference.

Original entry on oeis.org

1, 1, 2, 1, 3, 2, 1, 4, 5, 4, 1, 5, 8, 9, 2, 1, 6, 13, 22, 15, 8, 1, 7, 18, 41, 40, 39, 2, 1, 8, 25, 66, 103, 112, 45, 16, 1, 9, 32, 107, 202, 275, 182, 129, 6, 1, 10, 41, 158, 381, 730, 685, 688, 149, 32, 1, 11, 50, 219, 636, 1589, 2036, 2525, 844, 243, 2, 1, 12, 61, 304, 1033, 3000, 5153, 7488, 5221, 2090, 369, 64, 1
Offset: 1

Views

Author

R. H. Hardin, Nov 13 2011

Keywords

Comments

Table starts
1 1 1 1 1 1 1 1 1 1 1
2 3 4 5 6 7 8 9 10 11 12
2 5 8 13 18 25 32 41 50 61 72
4 9 22 41 66 107 158 219 304 403 516
2 15 40 103 202 381 636 1033 1550 2287 3212
8 39 112 275 730 1589 3000 5181 8350 13871 21588
2 45 182 685 2036 5153 11370 23035 43284 76523 129052
16 129 688 2525 7488 18809 52166 121921 253768 484977 867086
6 149 844 5221 19262 68813 194818 514113 1171190 2531421 5019770
32 243 2090 13897 62772 256859 841122 2347671 6169890 14503751 31169760
T(n,k) is the number of integer lattice points in k*C(n) where C(n) is a certain polytope with vertices having rational entries (the intersection of [0,1]^n with a hyperplane). Thus row n is an Ehrhart quasi-polynomial of degree n-1. - Robert Israel, Dec 12 2019

Examples

			Some solutions for n=7, k=6:
  5  6  5  3  6  0  0  5  4  1  2  2  0  2  1  2
  3  1  5  1  6  5  4  0  2  5  2  0  2  0  4  0
  3  3  6  5  6  1  6  2  0  1  1  4  3  4  6  2
  3  2  3  6  5  1  3  6  0  2  1  6  3  3  6  3
  2  0  2  5  5  3  2  6  1  6  2  5  3  1  5  2
  1  1  6  5  6  2  6  1  2  6  3  3  4  3  4  1
  4  1  1  3  1  2  0  1  5  0  3  1  6  1  2  4
		

Crossrefs

Row 3 is A000982(n+1).
Cf. A187202 (for 3rd PARI function).

Programs

  • PARI
    pad(d, n) = while(#d != n, d = concat([0], d)); d;
    mydigits(i,n) = if (n<2, vector(i), digits(i,n));
    bedt(n) = {for(i=2, #n=n, n=vecextract(n, "^1")-vecextract(n, "^-1")); n[1];}
    T(n, k) = {k++; my(nbok = 0); for (i=0, k^n-1, d = pad(mydigits(i,k), n); if (bedt(d) == 0, nbok++);); nbok;} \\ Michel Marcus, Apr 08 2017

A187204 Numbers n such that the bottom entry in the difference table of the divisors of n is 0.

Original entry on oeis.org

10, 171, 1947, 2619, 265105, 478834027, 974622397, 11373118351
Offset: 1

Views

Author

Omar E. Pol, Aug 01 2011

Keywords

Comments

Numbers n such that A187202(n) = 0.
11373118351 and 1756410942451 are also in the sequence (not necessarily the next two terms). - Donovan Johnson, Aug 05 2011
For every integer m, does there exist a prime p such that abs(A187202(r * m)) > abs(A187202(q * m)) and sign(A187202(r * m)) = sign(A187202(q * m)), and q >= p is prime and prime r > q? - David A. Corneth, Apr 08 2017
No other terms up to 3*10^9. - Michel Marcus, Apr 09 2017
a(9) > 6*10^10. 138662735650982521 and 168248347462416481 are also terms. - Giovanni Resta, Apr 12 2017

Examples

			10 has divisors 1, 2, 5, 10. The third difference of these numbers is 0.  This is the only possible number having 2 prime factors of the form p*q. The other terms have factorization 171 = 3^2*19, 1947 = 3*11*59, 2619 = 3^3*97, and 265105 = 5*37*1433.
		

Crossrefs

Programs

  • Haskell
    import Data.List (elemIndices)
    a187204 n = a187204_list !! (n-1)
    a187204_list = map (+ 1) $ elemIndices 0 $ map a187202 [1..]
    -- Reinhard Zumkeller, Aug 02 2011
    
  • Mathematica
    t = {}; Do[d = Divisors[n]; If[Differences[d, Length[d]-1] == {0}, AppendTo[t, n]], {n, 10^4}]; t (* T. D. Noe, Aug 01 2011 *)
  • PARI
    is(n) = my(d=divisors(n)); !sum(i=1, #d, binomial(#d-1,i-1)*d[i]*(-1)^i) \\ David A. Corneth, Apr 08 2017

Extensions

Suggested by T. D. Noe in the "history" of A187203.
a(6)-a(7) from Donovan Johnson, Aug 03 2011
a(8) from Giovanni Resta, Apr 11 2017

A187205 Numbers such that the last of the absolute differences of divisors is 0.

Original entry on oeis.org

10, 40, 50, 56, 104, 130, 136, 160, 170, 171, 224, 230, 232, 250, 290, 310, 312, 370, 392, 410, 430, 459, 470, 520, 530, 560, 590, 610, 624, 640, 648, 670, 710, 730, 790, 830, 890, 896, 970, 1000, 1010, 1030, 1070, 1088, 1090, 1130, 1160, 1216, 1218, 1221
Offset: 1

Views

Author

Omar E. Pol, Aug 01 2011

Keywords

Comments

Numbers n such that A187203(n) = 0.

Crossrefs

Programs

  • Haskell
    import Data.List (elemIndices)
    a187205 n = a187205_list !! (n-1)
    a187205_list = map (+ 1) $ elemIndices 0 $ map a187203 [1..]

A273109 Numbers n such that in the difference triangle of the divisors of n (including the divisors of n) the diagonal from the bottom entry to n gives the divisors of n.

Original entry on oeis.org

1, 2, 4, 8, 12, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384, 32768, 65536, 131072, 262144, 524288, 1048576, 2097152, 4194304, 8388608, 16777216, 33554432, 67108864, 134217728, 268435456, 536870912, 1073741824, 2147483648, 4294967296, 8589934592
Offset: 1

Views

Author

Omar E. Pol, May 15 2016

Keywords

Comments

Is this also the union of 12 and the powers of 2?
All powers of 2 are in the sequence.

Examples

			For n = 12 the difference triangle of the divisors of 12 is
1 . 2 . 3 . 4 . 6 . 12
. 1 . 1 . 1 . 2 . 6
. . 0 . 0 . 1 . 4
. . . 0 . 1 . 3
. . . . 1 . 2
. . . . . 1
The bottom entry is 1, and the diagonal from the bottom entry to 12 is [1, 2, 3, 4, 6, 12] hence the diagonal gives the divisors of 12, so 12 is in the sequence.
Note that for n = 12 and the powers of 2 the descending diagonals, from left to right, are symmetrics, for example: the first diagonal is 1, 1, 0, 0, 1, 1.
		

Crossrefs

Programs

  • Mathematica
    aQ[n_] := Module[{d=Divisors[n]}, nd = Length[d]; vd = d; ans = True; Do[ vd = Differences[vd]; If[Max[vd] != d[[nd-k]], ans=False; Break[]], {k,1,nd-1}]; ans]; Select[Range[100000], aQ] (* Amiram Eldar, Feb 23 2019 *)
  • PARI
    isok(n) = {my(d = divisors(n)); my(nd = #d); my(vd = d); for (k=1, nd-1, vd = vector(#vd-1, j, vd[j+1] - vd[j]); if (vecmax(vd) != d[nd-k], return (0));); return (1);} \\ Michel Marcus, May 16 2016

Extensions

a(12)-a(21) from Michel Marcus, May 16 2016
a(22)-a(35) from Amiram Eldar, Feb 23 2019

A273135 Difference table of the divisors of the positive integers (with every table read by antidiagonals downwards).

Original entry on oeis.org

1, 1, 2, 1, 1, 3, 2, 1, 2, 1, 4, 2, 1, 1, 5, 4, 1, 2, 1, 3, 1, 0, 6, 3, 2, 2, 1, 7, 6, 1, 2, 1, 4, 2, 1, 8, 4, 2, 1, 1, 3, 2, 9, 6, 4, 1, 2, 1, 5, 3, 2, 10, 5, 2, 0, 1, 11, 10, 1, 2, 1, 3, 1, 0, 4, 1, 0, 0, 6, 2, 1, 1, 1, 12, 6, 4, 3, 2, 1, 1, 13, 12, 1, 2, 1, 7, 5, 4, 14, 7, 2, -2, 1, 3, 2, 5, 2, 0, 15, 10, 8, 8
Offset: 1

Views

Author

Omar E. Pol, May 18 2016

Keywords

Comments

This is an irregular tetrahedron T(n,j,k) in which the slice n lists the elements of the j-th antidiagonal of the difference triangle of the divisors of n.
The first row of the slice n is also the n-th row of the triangle A027750.
The bottom entry of the slice n is A187202(n).
The number of elements in the n-th slice is A000217(A000005(n)) = A184389(n).
The sum of the elements of the n-th slice is A273103(n).
The antidiagonal sums give A273262.
If n is a power of 2 the antidiagonals are also the divisors of the powers of 2 from 1 to n in decreasing order, for example if n = 8 the finite sequence of antidiagonals is [1], [2, 1], [4, 2, 1], [8, 4, 2, 1].
First differs from A272121 at a(92).

Examples

			The tables of the first nine positive integers are
  1; 1, 2; 1, 3; 1, 2, 4; 1, 5; 1, 2, 3, 6; 1, 7; 1, 2, 4, 8; 1, 3, 9;
     1;    2;    1, 2;    4;    1, 1, 3;    6;    1, 2, 4;    2, 6;
                 1;             0, 2;             1, 2;       4;
                                2;                1;
For n = 18 the difference table of the divisors of 18 is
  1,  2, 3, 6, 9, 18;
  1,  1, 3, 3, 9;
  0,  2, 0, 6;
  2, -2, 6;
 -4,  8;
 12;
This table read by antidiagonals downwards gives the finite subsequence [1], [2, 1], [3, 1, 0], [6, 3, 2, 2], [9, 3, 0, -2, -4], [18, 9, 6, 6, 8, 12].
		

Crossrefs

Programs

  • Mathematica
    Table[Table[#[[m - k + 1, k]], {m, Length@ #}, {k, m, 1, -1}] &@ NestWhileList[Differences, Divisors@ n, Length@ # > 1 &], {n, 15}] // Flatten (* Michael De Vlieger, Jun 26 2016 *)
Showing 1-10 of 26 results. Next