A187202
The bottom entry in the difference table of the divisors of n.
Original entry on oeis.org
1, 1, 2, 1, 4, 2, 6, 1, 4, 0, 10, 1, 12, -2, 8, 1, 16, 12, 18, -11, 8, -6, 22, -12, 16, -8, 8, -3, 28, 50, 30, 1, 8, -12, 28, -11, 36, -14, 8, -66, 40, 104, 42, 13, 24, -18, 46, -103, 36, -16, 8, 21, 52, 88, 36, 48, 8, -24, 58, -667, 60, -26, -8, 1, 40, 72
Offset: 1
a(18) = 12 because the divisors of 18 are 1, 2, 3, 6, 9, 18, and the difference triangle of the divisors is:
1 . 2 . 3 . 6 . 9 . 18
. 1 . 1 . 3 . 3 . 9
. . 0 . 2 . 0 . 6
. . . 2 .-2 . 6
. . . .-4 . 8
. . . . . 12
with bottom entry a(18) = 12.
Note that A187203(18) = 4.
-
a187202 = head . head . dropWhile ((> 1) . length) . iterate diff . divs
where divs n = filter ((== 0) . mod n) [1..n]
diff xs = zipWith (-) (tail xs) xs
-- Reinhard Zumkeller, Aug 02 2011
-
f:=proc(n) local k,d,lis; lis:=divisors(n); d:=nops(lis);
add( (-1)^k*binomial(d-1,k)*lis[d-k], k=0..d-1); end;
[seq(f(n),n=1..100)]; # N. J. A. Sloane, May 01 2016
-
Table[d = Divisors[n]; Differences[d, Length[d] - 1][[1]], {n, 100}] (* T. D. Noe, Aug 01 2011 *)
-
A187202(n)={ for(i=2,#n=divisors(n), n=vecextract(n,"^1")-vecextract(n,"^-1")); n[1]} \\ M. F. Hasler, Aug 01 2011
A273102
Difference table of the divisors of the positive integers.
Original entry on oeis.org
1, 1, 2, 1, 1, 3, 2, 1, 2, 4, 1, 2, 1, 1, 5, 4, 1, 2, 3, 6, 1, 1, 3, 0, 2, 2, 1, 7, 6, 1, 2, 4, 8, 1, 2, 4, 1, 2, 1, 1, 3, 9, 2, 6, 4, 1, 2, 5, 10, 1, 3, 5, 2, 2, 0, 1, 11, 10, 1, 2, 3, 4, 6, 12, 1, 1, 1, 2, 6, 0, 0, 1, 4, 0, 1, 3, 1, 2, 1, 1, 13, 12, 1, 2, 7, 14, 1, 5, 7, 4, 2, -2, 1, 3, 5, 15, 2, 2, 10, 0, 8, 8
Offset: 1
For n = 18 the divisors of 18 are 1, 2, 3, 6, 9, 18, so the difference triangle of the divisors of 18 is
1 . 2 . 3 . 6 . 9 . 18
1 . 1 . 3 . 3 . 9
0 . 2 . 0 . 6
2 .-2 . 6
-4 . 8
12
and the 18th slice is
1, 2, 3, 6, 9, 18;
1, 1, 3, 3, 9;
0, 2, 0, 6;
2,-2, 6;
-4, 8;
12;
The tetrahedron begins:
1;
1, 2;
1;
1, 3;
2;
1, 2, 4;
1, 2;
1;
...
This is also an irregular triangle T(n,r) read by rows in which row n lists the difference triangle of the divisors of n flattened. Row lengths are the terms of A184389. Row sums give A273103.
Triangle begins:
1;
1, 2, 1;
1, 3, 2;
1, 2, 4, 1, 2, 1;
...
-
Table[Drop[FixedPointList[Differences, Divisors@ n], -2], {n, 15}] // Flatten (* Michael De Vlieger, May 16 2016 *)
-
def A273102_DTD(n): # DTD = Difference Table of Divisors
D = divisors(n)
T = matrix(ZZ, len(D))
for (m, d) in enumerate(D):
T[0, m] = d
for k in range(m-1, -1, -1) :
T[m-k, k] = T[m-k-1, k+1] - T[m-k-1, k]
return [T.row(k)[:len(D)-k] for k in range(len(D))]
# Keeps the rows of the DTD, for instance
# A273102_DTD(18)[1] = 1,1,3,3,9 (see the example above).
for n in range(1,19): print(A273102_DTD(n)) # Peter Luschny, May 18 2016
A187205
Numbers such that the last of the absolute differences of divisors is 0.
Original entry on oeis.org
10, 40, 50, 56, 104, 130, 136, 160, 170, 171, 224, 230, 232, 250, 290, 310, 312, 370, 392, 410, 430, 459, 470, 520, 530, 560, 590, 610, 624, 640, 648, 670, 710, 730, 790, 830, 890, 896, 970, 1000, 1010, 1030, 1070, 1088, 1090, 1130, 1160, 1216, 1218, 1221
Offset: 1
A187208
Numbers such that the last of the absolute differences of divisors is 1.
Original entry on oeis.org
1, 2, 4, 8, 12, 16, 20, 32, 36, 48, 64, 80, 108, 112, 128, 156, 192, 204, 220, 252, 256, 260, 272, 304, 320, 324, 368, 396, 448, 476, 484, 512, 544, 608, 656, 660, 688, 768, 972, 1008, 1024, 1044, 1120, 1184, 1248, 1280, 1300, 1332, 1476, 1764, 1792, 1908
Offset: 1
-
import Data.List (elemIndices)
a187208 n = a187208_list !! (n-1)
a187208_list = map (+ 1) $ elemIndices 1 $ map a187203 [1..]
-- Reinhard Zumkeller, Aug 02 2011
-
lad1Q[n_]:=Nest[Abs[Differences[#]]&,Divisors[n],DivisorSigma[0,n]-1]=={1}; Select[Range[2000],lad1Q] (* Harvey P. Dale, Nov 07 2022 *)
A193672
Numbers such that the last of the differences of divisors is < 0.
Original entry on oeis.org
14, 20, 22, 24, 26, 28, 34, 36, 38, 40, 46, 48, 50, 58, 60, 62, 63, 70, 74, 80, 82, 84, 86, 94, 96, 98, 99, 100, 105, 106, 117, 118, 120, 122, 134, 136, 138, 140, 142, 146, 152, 153, 154, 158, 160, 166, 170, 174, 178, 180, 182, 184, 186, 189, 190, 192, 194
Offset: 1
-
import Data.List (findIndices)
a193672 n = a193672_list !! (n-1)
a193672_list = map (+ 1) $ findIndices (< 0) $ map a187202 [1..]
-
Select[Range[200],Differences[Divisors[#],DivisorSigma[0,#]-1][[1]]<0&] (* Harvey P. Dale, Feb 14 2025 *)
A273261
Irregular triangle read by rows: T(n,k) = sum of the elements of the k-th row of the difference table of the divisors of n.
Original entry on oeis.org
1, 3, 1, 4, 2, 7, 3, 1, 6, 4, 12, 5, 2, 2, 8, 6, 15, 7, 3, 1, 13, 8, 4, 18, 9, 4, 0, 12, 10, 28, 11, 5, 4, 3, 1, 14, 12, 24, 13, 6, -2, 24, 14, 8, 8, 31, 15, 7, 3, 1, 18, 16, 39, 17, 8, 6, 4, 12, 20, 18, 42, 19, 9, 4, 3, -11, 32, 20, 12, 8, 36, 21, 10, -6, 24, 22, 60, 23, 11, 8, 6, 3, 4, -12, 31, 24, 16, 42, 25, 12, -8
Offset: 1
Triangle begins:
1;
3, 1;
4, 2;
7, 3, 1;
6, 4;
12, 5, 2, 2;
8, 6;
15, 7, 3, 1;
13, 8, 4;
18, 9, 4, 0;
12, 10;
28, 11, 5, 4, 3, 1;
14, 12;
24, 13, 6, -2;
24, 14, 8, 8;
31, 15, 7, 3, 1;
18, 16;
39, 17, 8, 6, 4, 12;
20, 18;
42, 19, 9, 4, 3, -11;
32, 20, 12, 8;
36, 21, 10, -6;
24, 22;
60, 23, 11, 8, 6, 3, 4, -12;
31, 24, 16;
42, 25, 12, -8;
...
For n = 14 the divisors of 14 are 1, 2, 7, 14, and the difference triangle of the divisors is
1, 2, 7, 14;
1, 5, 7;
4, 2;
-2;
The row sums give [24, 13, 6, -2] which is also the 14th row of the irregular triangle.
In the first row, the last element is 14, the first is 1. So the sum of the second row is 14 - 1 is 13. Similarly, the sum of the third row is 7 - 1 = 6, and of the last row, 2 - 4 = -2. - _David A. Corneth_, Jun 25 2016
-
Map[Total, Table[NestWhileList[Differences, Divisors@ n, Length@ # > 1 &], {n, 26}], {2}] // Flatten (* Michael De Vlieger, Jun 26 2016 *)
-
row(n) = {my(d = divisors(n));my(nd = #d); my(m = matrix(#d, #d)); for (j=1, nd, m[1,j] = d[j];); for (i=2, nd, for (j=1, nd - i +1, m[i,j] = m[i-1,j+1] - m[i-1,j];);); vector(nd, i, sum(j=1, nd, m[i, j]));}
tabf(nn) = for (n=1, nn, print(row(n)););
lista(nn) = for (n=1, nn, v = row(n); for (j=1, #v, print1(v[j], ", "));); \\ Michel Marcus, Jun 25 2016
A193671
Numbers such that the last of the differences of divisors is > 0.
Original entry on oeis.org
1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 15, 16, 17, 18, 19, 21, 23, 25, 27, 29, 30, 31, 32, 33, 35, 37, 39, 41, 42, 43, 44, 45, 47, 49, 51, 52, 53, 54, 55, 56, 57, 59, 61, 64, 65, 66, 67, 68, 69, 71, 72, 73, 75, 76, 77, 78, 79, 81, 83, 85, 87, 88, 89, 90, 91
Offset: 1
A272374
Numbers n such that A187202(n) is <= 0.
Original entry on oeis.org
10, 14, 20, 22, 24, 26, 28, 34, 36, 38, 40, 46, 48, 50, 58, 60, 62, 63, 70, 74, 80, 82, 84, 86, 94, 96, 98, 99, 100, 105, 106, 117, 118, 120, 122, 134, 136, 138, 140, 142, 146, 152, 153, 154, 158, 160, 166, 170, 171, 174, 178, 180, 182, 184, 186, 189, 190, 192, 194, 196, 198, 200, 202, 206, 208, 214
Offset: 1
-
f[n_] := Block[{d = Divisors@ n}, Differences[d, Length@ d - 1][[1]]]; Select[ Range@ 215, f@# < 1&]
Showing 1-8 of 8 results.
Comments