A187251 Number of permutations of [n] having no cycle with 3 or more alternating runs (it is assumed that the smallest element of a cycle is in the first position).
1, 1, 2, 6, 22, 94, 460, 2532, 15420, 102620, 739512, 5729192, 47429896, 417429800, 3888426512, 38192416048, 394239339792, 4264424937488, 48212317486112, 568395755184224, 6973300915138656, 88860103591344864, 1174131206436335296, 16061756166912244800
Offset: 0
Keywords
Examples
a(4)=22 because only the permutations 3421=(1324) and 4312=(1423) have cycles with more than 2 alternating runs.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..528
- Veronica Bitonti, Bishal Deb, and Alan D. Sokal, Thron-type continued fractions (T-fractions) for some classes of increasing trees, arXiv:2412.10214 [math.CO], 2024. See p. 56.
Programs
-
Maple
g := exp((2*z-1+exp(2*z))*1/4): gser := series(g, z = 0, 28): seq(factorial(n)*coeff(gser, z, n), n = 0 .. 23); # second Maple program: a:= proc(n) option remember; `if`(n=0, 1, add( a(n-j)*binomial(n-1, j-1)*ceil(2^(j-2)), j=1..n)) end: seq(a(n), n=0..23); # Alois P. Heinz, May 30 2021
-
Mathematica
nmax = 20; CoefficientList[Series[E^((2*x-1+E^(2*x))/4), {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Apr 17 2020 *)
-
Maxima
a(n):=n!*sum(2^(n-2*k)*sum(binomial(k,j)*stirling2(n-k+j,j)*j!/(n-k+j)!,j,0,k)/k!,k,1,n); /* Vladimir Kruchinin, Apr 25 2011 */
-
PARI
x='x+O('x^66); Vec(serlaplace(exp( (2*x-1+exp(2*x))/4 ))) /* Joerg Arndt, Apr 26 2011 */
-
PARI
lista(m) = {P = x*y; for (n=1, m, M = subst(P, x, 1); M = subst(M, y, 1); print1(polcoeff(M, 0, q), ", "); P = (n*q+x*y)*P + 2*q*(1-q)*deriv(P, q)+ 2*x*(1-q)*deriv(P, x)+ (1-2*y+q*y)*deriv(P, y); ); } \\ (adapted from PARI prog in A216964) \\ Michel Marcus, May 17 2013
Formula
E.g.f.: exp( (2*z-1+exp(2*z))/4 ).
For n>=1: a(n)=n!*sum(k=1..n, 2^(n-2*k)*sum(j=0..k, binomial(k,j)*stirling2(n-k+j,j)*j!/(n-k+j)!)/k!); [From Vladimir Kruchinin, Apr 25 2011]
G.f.: 1/Q(0) where Q(k) = 1 - x*k - x/(1 - x*(k+1)/Q(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Mar 07 2013
G.f.: 1/Q(0) where Q(k) = 1 - x*(2*k+1) - m*x^2*(k+1)/Q(k+1) and m=1 (continued fraction); setting m=2 gives A004211, m=4 gives A124311 without signs. - Sergei N. Gladkovskii, Sep 26 2013
G.f.: T(0)/(1-x), where T(k) = 1 - x^2*(k+1)/( x^2*(k+1) - (1-x-2*x*k)*(1-3*x-2*x*k)/T(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Oct 25 2013
Sum_{k=0..n} binomial(n,k) * a(k) * a(n-k) = A007405(n). - Vaclav Kotesovec, Apr 17 2020
a(n) = Sum_{j=1..n} a(n-j)*binomial(n-1,j-1)*ceiling(2^(j-2)) for n > 0, a(0) = 1. - Alois P. Heinz, May 30 2021
Comments