cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A007405 Dowling numbers: e.g.f.: exp(x + (exp(b*x) - 1)/b) with b=2.

Original entry on oeis.org

1, 2, 6, 24, 116, 648, 4088, 28640, 219920, 1832224, 16430176, 157554048, 1606879040, 17350255744, 197553645440, 2363935624704, 29638547505408, 388328781668864, 5304452565517824, 75381218537805824, 1112348880749130752, 17014743624340539392, 269360902955086379008
Offset: 0

Views

Author

Keywords

Comments

Binomial transform of A004211.
Equals leftmost term in iterates of M^n * [1,1,1,...], where M = a bidiagonal matrix with (1,3,5,7,...) in the main diagonal and (1,1,1,...) in the superdiagonal. - Gary W. Adamson, Apr 13 2009
This is the number of type B set partitions, see R. Suter. - Per W. Alexandersson, Dec 19 2022

Examples

			a(4) = 116 = sum of top row terms of M^3 = (49 + 44 + 18 + 4 + 1).
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000110 (b=1), this sequence (b=2), A003575 (b=3), A003576 (b=4), A003577 (b=5), A003578 (b=6), A003579 (b=7), A003580 (b=8), A003581 (b=9), A003582 (b=10).

Programs

  • Magma
    m:=20; c:=2; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( Exp(x +(Exp(c*x)-1)/c) )); [Factorial(n-1)*b[n]: n in [1..m-1]]; // G. C. Greubel, Feb 24 2019
  • Mathematica
    max = 19; f[x_]:= Exp[x + Exp[2x]/2 -1/2]; CoefficientList[Series[f[x], {x,0,max}], x]*Range[0, max]! (* Jean-François Alcover, Nov 22 2011 *)
    Table[Sum[Binomial[n, k] * 2^k * BellB[k, 1/2], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Apr 17 2020 *)
  • PARI
    x='x+O('x^66); Vec(serlaplace(exp(x+1/2*exp(2*x)-1/2))) \\ Joerg Arndt, May 13 2013
    
  • Sage
    @CachedFunction
    def S(n, k, m):
        if k > n or k < 0 : return 0
        if n == 0 and k == 0: return 1
        return S(n-1, k-1, m) + (m*(k+1)-1)*S(n-1, k, m)
    def A007405(n): return add(S(n, k, 2) for k in (0..n)) # Peter Luschny, May 20 2013
    
  • Sage
    b=2;
    def A007405_list(prec):
        P. = PowerSeriesRing(QQ, prec)
        return P( exp(x +(exp(b*x)-1)/b) ).egf_to_ogf().list()
    A007405_list(30) # G. C. Greubel, Feb 24 2019
    

Formula

E.g.f.: exp(x + (exp(2*x) - 1)/2).
Row sums of triangles A039755, A039756. - Philippe Deléham, Feb 20 2005
a(n) = sum of top row terms of M^n, M = an infinite square production matrix in which a diagonal of 1's is appended to the right of Pascal's triangle squared; as follows:
1, 1, 0, 0, 0, 0, ...
2, 1, 1, 0, 0, 0, ...
4, 4, 1, 1, 0, 0, ...
8, 12, 6, 1, 1, 0, ...
16, 32, 24, 8, 1, 1, ...
... - Gary W. Adamson, Aug 01 2011
G.f.: (G(0) - 1)/(x-1) where G(k) = 1 - 1/(1-(2*k+1)*x)/(1-x/(x-1/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Jan 16 2013
G.f.: -G(0) where G(k) = 1 - (x*(2*k+1) - 2)/(x*(2*k+1) - 1 - x*(x*(2*k+1) - 1)/(x + (x*(2*k+1) - 2)/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Jan 29 2013
G.f.: 1/Q(0), where Q(k) = 1 - 2*(k+1)*x - 2*(k+1)*x^2/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, May 03 2013
G.f.: 1/Q(0), where Q(k) = 1 - x - x/(1 - x*(2*k+2)/Q(k+1)); (continued fraction). - Sergei N. Gladkovskii, May 13 2013
G.f.: 1/(1-x*Q(0)), where Q(k) = 1 + x/(1 - x + 2*x*(k+1)/(x - 1/Q(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 19 2013
Conjecture: Let M_n be an n X n matrix whose elements are m_ij = 1 for i < j - 1, m_ij = -1 for i = j - 1, and m_ij = binomial(n - i,j - i) otherwise. Then a(n - 1) = Det(M_n). - Benedict W. J. Irwin, Apr 19 2017
a(n) = exp(-1/2) * Sum_{k>=0} (2*k + 1)^n / (2^k * k!). - Ilya Gutkovskiy, Apr 16 2020
a(n) = Sum_{k=0..n} binomial(n,k) * A187251(k) * A187251(n-k). - Vaclav Kotesovec, Apr 17 2020
a(n) ~ 2^(n + 1/2) * n^(n + 1/2) * exp(n/LambertW(2*n) - n - 1/2) / (sqrt(1 + LambertW(2*n)) * LambertW(2*n)^(n + 1/2)). - Vaclav Kotesovec, Jun 26 2022

Extensions

Name edited by G. C. Greubel, Feb 24 2019

A344855 Number T(n,k) of permutations of [n] having k cycles of the form (c1, c2, ..., c_m) where c1 = min_{i>=1} c_i and c_j = min_{i>=j} c_i or c_j = max_{i>=j} c_i; triangle T(n,k), n>=0, 0<=k<=n, read by rows.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 2, 3, 1, 0, 4, 11, 6, 1, 0, 8, 40, 35, 10, 1, 0, 16, 148, 195, 85, 15, 1, 0, 32, 560, 1078, 665, 175, 21, 1, 0, 64, 2160, 5992, 5033, 1820, 322, 28, 1, 0, 128, 8448, 33632, 37632, 17913, 4284, 546, 36, 1, 0, 256, 33344, 190800, 280760, 171465, 52941, 9030, 870, 45, 1
Offset: 0

Views

Author

Alois P. Heinz, May 30 2021

Keywords

Comments

The sequence of column k satisfies a linear recurrence with constant coefficients of order k*(k+1)/2 = A000217(k).

Examples

			T(4,1) = 4: (1234), (1243), (1423), (1432).
Triangle T(n,k) begins:
  1;
  0,  1;
  0,  1,    1;
  0,  2,    3,    1;
  0,  4,   11,    6,    1;
  0,  8,   40,   35,   10,    1;
  0, 16,  148,  195,   85,   15,   1;
  0, 32,  560, 1078,  665,  175,  21,  1;
  0, 64, 2160, 5992, 5033, 1820, 322, 28, 1;
  ...
		

Crossrefs

Row sums give A187251.
Main diagonal gives A000012, lower diagonal gives A000217, second lower diagonal gives A000914.
T(n+1,n) gives A000217.
T(n+2,n) gives A000914.
T(2n,n) gives A345342.

Programs

  • Maple
    b:= proc(n) option remember; `if`(n=0, 1, add(expand(x*
          b(n-j)*binomial(n-1, j-1)*ceil(2^(j-2))), j=1..n))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..n))(b(n)):
    seq(T(n), n=0..12);
  • Mathematica
    b[n_] := b[n] = If[n == 0, 1, Sum[Expand[x*b[n-j]*
         Binomial[n-1, j-1]*Ceiling[2^(j-2)]], {j, n}]];
    T[n_] := CoefficientList[b[n], x];
    Table[T[n], {n, 0, 12}] // Flatten (* Jean-François Alcover, Aug 23 2021, after Alois P. Heinz *)

Formula

Sum_{k=1..n} k * T(n,k) = A345341(n).
For fixed k, T(n,k) ~ (2*k)^n / (4^k * k!). - Vaclav Kotesovec, Jul 15 2021

A187250 Triangle read by rows: T(n,k) is the number of permutations of [n] having k cycles with at least 3 alternating runs (it is assumed that the smallest element of a cycle is in the first position), 0<=k<=floor(n/4).

Original entry on oeis.org

1, 1, 2, 6, 22, 2, 94, 26, 460, 260, 2532, 2508, 15420, 24760, 140, 102620, 254968, 5292, 739512, 2760432, 128856, 5729192, 31547344, 2640264, 47429896, 381339368, 50186136, 46200, 417429800, 4879612808, 926494712, 3483480, 3888426512, 66107044176, 17025751600, 157068912
Offset: 0

Views

Author

Emeric Deutsch, Mar 08 2011

Keywords

Comments

Number of entries in row n is 1+floor(n/4).
Sum of entries in row n is n!.
T(n,0)=A187251(n).
Sum(k*T(n,k), k>=0) = A187252(n).

Examples

			T(4,1)=2 because we have (1324) and (1423).
Triangle starts:
1;
1;
2;
6;
22,2;
94,26;
460,260;
		

Crossrefs

Programs

  • Maple
    G := exp((1/4*(1-t))*(2*z-1+exp(2*z)))/(1-z)^t: Gser := simplify(series(G, z = 0, 17)): for n from 0 to 14 do P[n] := sort(factorial(n)*coeff(Gser, z, n)) end do: for n from 0 to 14 do seq(coeff(P[n], t, k), k = 0 .. floor((1/4)*n)) end do; # yields sequence in triangular form

Formula

E.g.f.: G(t,z) = exp[(1/4)(1-t)(2z-1+exp(2z))]/(1-z)^t.
The 4-variate g.f. H(u,v,w,z) (exponential with respect z), where u marks number of cycles with 1 alternating run, v marks number of cycles with 2 alternating runs, w marks the number of all cycles, and z marks the size of the permutation, is given by H(u,v,w,z) = exp[(1/4)w((v-1)(exp(2z)+2z)+4(u-v)exp(z)+1-4u+3v)]/(1-z)^w.
We have G(t,z) = H(1/t,1/t,t,z).

A216964 Triangle read by rows, arising in enumeration of permutations by cyclic valleys, cycles and fixed points.

Original entry on oeis.org

1, 2, 6, 22, 2, 94, 26, 460, 244, 16, 2532, 2124, 384, 15420, 18536, 6092, 272, 102620, 166440, 83436, 10384, 739512, 1550864, 1082712, 247776, 7936, 5729192, 15040112, 13841928, 4864480, 441088, 47429896, 151960264, 177512632, 87003032, 14741984, 353792
Offset: 1

Views

Author

N. J. A. Sloane, Sep 27 2012

Keywords

Comments

See Ma and Chow (2012) for precise definition (see Corollary 5).

Examples

			Triangle begins:
1
2
6
22, 2
94, 26
460, 244, 16
2532, 2124, 384
...
		

Crossrefs

First column is A187251.

Programs

  • Mathematica
    rows = 12;
    Reap[For[P = x*y; n = 1; Sow[{1}], n < rows, n++, P = (n*q + x*y)*P + 2*q*(1-q)*D[P, q] + 2*x*(1-q)*D[P, x] + (1-2*y+q*y)*D[P, y] // Simplify; Sow[CoefficientList[P /. {x -> 1, y -> 1}, q]]]][[2, 1]] // Flatten (* Jean-François Alcover, Sep 23 2018, from PARI *)
  • PARI
    tabf(m) = {P = x*y; for (n=1, m, M = subst(P, x, 1); M = subst(M, y, 1); for (d=0, poldegree(M, q), print1(polcoeff(M, d, q), ", "); ); print(""); P = (n*q+x*y)*P + 2*q*(1-q)*deriv(P, q)+ 2*x*(1-q)*deriv(P,x)+ (1-2*y+q*y)*deriv(P,y););} \\ Michel Marcus, Feb 08 2013

Extensions

More terms from Michel Marcus, Feb 08 2013

A347011 Euler transform of j-> ceiling(2^(j-2)).

Original entry on oeis.org

1, 1, 2, 4, 9, 19, 43, 93, 207, 453, 999, 2185, 4796, 10470, 22871, 49815, 108427, 235515, 511074, 1107248, 2396299, 5179169, 11181877, 24113939, 51949572, 111801422, 240381703, 516355235, 1108186951, 2376314763, 5091422730, 10900063776, 23317805916
Offset: 0

Views

Author

Alois P. Heinz, Aug 10 2021

Keywords

Comments

Differs from A206301 first at n=10.

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, add(
          b(n-i*j, i-1)*binomial(ceil(2^(i-2))+j-1, j), j=0..n/i)))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..35);
    # second Maple program:
    a:= proc(n) option remember; `if`(n=0, 1, add(a(n-j)*add(d*
           ceil(2^(d-2)), d=numtheory[divisors](j)), j=1..n)/n)
        end:
    seq(a(n), n=0..35);
  • Mathematica
    CoefficientList[Series[1/(1-x) * Product[1/(1 - x^k)^(2^(k-2)), {k, 2, 40}], {x, 0, 40}], x] (* Vaclav Kotesovec, Aug 11 2021 *)

Formula

G.f.: Product_{j>0} 1/(1-x^j)^ceiling(2^(j-2)).
Showing 1-5 of 5 results.