cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A187273 a(n) = (n/4)*3^(n/2)*((1+sqrt(3))^2+(-1)^n*(1-sqrt(3))^2).

Original entry on oeis.org

0, 3, 12, 27, 72, 135, 324, 567, 1296, 2187, 4860, 8019, 17496, 28431, 61236, 98415, 209952, 334611, 708588, 1121931, 2361960, 3720087, 7794468, 12223143, 25509168, 39858075, 82904796, 129140163, 267846264, 416118303, 860934420, 1334448351, 2754990144, 4261625379, 8781531084, 13559717115, 27894275208
Offset: 0

Views

Author

N. J. A. Sloane, Mar 07 2011

Keywords

Programs

  • Magma
    [Round((n/4)*3^(n/2)*((1+Sqrt(3))^2+(-1)^n*(1-Sqrt(3))^2)): n in [0..50]]; // G. C. Greubel, Jul 08 2018
    
  • Maple
    See A187272.
  • Mathematica
    LinearRecurrence[{0,6,0,-9},{0,3,12,27},40] (* Harvey P. Dale, Apr 21 2014 *)
    CoefficientList[Series[3 x (x + 1) (3 x + 1)/(3 x^2 - 1)^2, {x, 0, 40}], x] (* Vincenzo Librandi, Apr 23 2014 *)
  • PARI
    for(n=0,50, print1(round((n/4)*3^(n/2)*((1+sqrt(3))^2+(-1)^n*(1-sqrt(3))^2)), ", ")) \\ G. C. Greubel, Jul 08 2018
    
  • Python
    def A187273(n): return n*3**(1+(n>>1)) if n&1 else (n<<1)*3**(n>>1) # Chai Wah Wu, Feb 19 2024

Formula

From Colin Barker, Jul 24 2013: (Start)
a(n) = 6*a(n-2) - 9*a(n-4).
G.f.: 3*x*(x+1)*(3*x+1) / (3*x^2-1)^2. (End)
a(2*n) = 4*n*3^n, a(2*n+1) = (2*n+1)*3^(n+1). - Andrew Howroyd, Mar 28 2016