A187306 Alternating sum of Motzkin numbers A001006.
1, 0, 2, 2, 7, 14, 37, 90, 233, 602, 1586, 4212, 11299, 30536, 83098, 227474, 625993, 1730786, 4805596, 13393688, 37458331, 105089228, 295673995, 834086420, 2358641377, 6684761124, 18985057352, 54022715450, 154000562759, 439742222070, 1257643249141
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..300
- M. H. Albert and V. Vatter, Generating and enumerating 321-avoiding and skew-merged simple permutations, arXiv preprint arXiv:1301.3122 [math.CO], 2013. - _N. J. A. Sloane_, Feb 11 2013
- Paul Barry, Jacobsthal Decompositions of Pascal's Triangle, Ternary Trees, and Alternating Sign Matrices, Journal of Integer Sequences, 19, 2016, #16.3.5.
- Cheyne Homberger, Patterns in Permutations and Involutions: A Structural and Enumerative Approach, arXiv preprint 1410.2657 [math.CO], 2014.
Programs
-
Maple
a := n -> (-1)^n*(1-hypergeom([1/2,-n-1],[2],4)); seq(round(evalf(a(n),99)),n=0..30); # Peter Luschny, Sep 25 2014
-
Mathematica
CoefficientList[Series[(1-x-Sqrt[1-2x-3x^2])/(2x^2(1+x)), {x,0,30}], x] (* Harvey P. Dale, Jun 14 2011 *)
-
PARI
x='x+O('x^66); Vec((1-x-sqrt(1-2*x-3*x^2))/(2*x^2*(1+x))) /* Joerg Arndt, Mar 07 2013 */
-
PARI
Vec(serreverse(x*(1-x)/(1-x+x^2) + O(x^30))^2) \\ Andrew Howroyd, Apr 28 2018
-
Sage
def A187306(): a, b, n = 1, 0, 1 yield a while True: n += 1 a, b = b, (2*b+3*a)*(n-1)/(n+1) yield b - (-1)^n A187306_list = A187306() [next(A187306_list) for i in range(20)] # Peter Luschny, Sep 25 2014
Formula
G.f.: (1-x-sqrt(1-2*x-3*x^2))/(2*x^2*(1+x)).
a(n) = sum(k=0..n, A001006(k)*(-1)^(n-k)).
D-finite with recurrence -(n+2)*a(n) +(n-1)*a(n-1) +(5*n-2)*a(n-2) +3*(n-1)a(n-3)=0. - R. J. Mathar, Nov 17 2011
a(n) = (2*sum(j=0..n, C(2*j+1,j+1)*(-1)^(n-j)*C(n+2,j+2)))/(n+2). - Vladimir Kruchinin, Feb 06 2013
a(n) ~ 3^(n+5/2)/(8*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Aug 15 2013
a(n) = (-1)^n*(1-hypergeom([1/2,-n-1],[2],4)). - Peter Luschny, Sep 25 2014
a(n) = A005043(n+1) + (-1)^n. - Peter Luschny, Sep 25 2014
G.f.: (1/(1 - x^2/(1 - x - x^2/(1 - x - x^2/(1 - x - x^2/(1 - ...))))))^2, a continued fraction. - Ilya Gutkovskiy, Sep 23 2017
Comments