cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A187306 Alternating sum of Motzkin numbers A001006.

Original entry on oeis.org

1, 0, 2, 2, 7, 14, 37, 90, 233, 602, 1586, 4212, 11299, 30536, 83098, 227474, 625993, 1730786, 4805596, 13393688, 37458331, 105089228, 295673995, 834086420, 2358641377, 6684761124, 18985057352, 54022715450, 154000562759, 439742222070, 1257643249141
Offset: 0

Views

Author

Paul Barry, Mar 08 2011

Keywords

Comments

Diagonal sums of A089942.
Hankel transform is A187307.
Also gives the number of simple permutations of each length that avoid the pattern 321 (i.e., are the union of two increasing sequences, and in one line notation contain no nontrivial block of values which form an interval). There are 2 such permutations of length 4, 2 of length 5, etc. - Michael Albert, Jun 20 2012
Convolution of A005043 with itself. - Philippe Deléham, Jan 28 2014
From Gus Wiseman, Nov 15 2022: (Start)
Conjecture: Also the number of topologically series-reduced ordered rooted trees with n + 2 vertices. This would imply a(n) = A284778(n-1) + A005043(n). For example, the a(0) = 1 through a(5) = 14 trees are:
(o) . (ooo) (oooo) (ooooo) (oooooo)
((oo)) ((ooo)) ((oo)oo) ((oo)ooo)
((oooo)) ((ooo)oo)
(o(oo)o) ((ooooo))
(oo(oo)) (o(oo)oo)
(((oo)o)) (o(ooo)o)
((o(oo))) (oo(oo)o)
(oo(ooo))
(ooo(oo))
(((oo)oo))
(((ooo)o))
((o(oo)o))
((o(ooo)))
((oo(oo)))
(End)

Crossrefs

Programs

  • Maple
    a := n -> (-1)^n*(1-hypergeom([1/2,-n-1],[2],4));
    seq(round(evalf(a(n),99)),n=0..30); # Peter Luschny, Sep 25 2014
  • Mathematica
    CoefficientList[Series[(1-x-Sqrt[1-2x-3x^2])/(2x^2(1+x)), {x,0,30}], x] (* Harvey P. Dale, Jun 14 2011 *)
  • PARI
    x='x+O('x^66); Vec((1-x-sqrt(1-2*x-3*x^2))/(2*x^2*(1+x))) /* Joerg Arndt, Mar 07 2013 */
    
  • PARI
    Vec(serreverse(x*(1-x)/(1-x+x^2) + O(x^30))^2) \\ Andrew Howroyd, Apr 28 2018
    
  • Sage
    def A187306():
        a, b, n = 1, 0, 1
        yield a
        while True:
            n += 1
            a, b = b, (2*b+3*a)*(n-1)/(n+1)
            yield b - (-1)^n
    A187306_list = A187306()
    [next(A187306_list) for i in range(20)] # Peter Luschny, Sep 25 2014

Formula

G.f.: (1-x-sqrt(1-2*x-3*x^2))/(2*x^2*(1+x)).
a(n) = sum(k=0..n, A001006(k)*(-1)^(n-k)).
D-finite with recurrence -(n+2)*a(n) +(n-1)*a(n-1) +(5*n-2)*a(n-2) +3*(n-1)a(n-3)=0. - R. J. Mathar, Nov 17 2011
a(n) = (2*sum(j=0..n, C(2*j+1,j+1)*(-1)^(n-j)*C(n+2,j+2)))/(n+2). - Vladimir Kruchinin, Feb 06 2013
a(n) ~ 3^(n+5/2)/(8*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Aug 15 2013
a(n) = (-1)^n*(1-hypergeom([1/2,-n-1],[2],4)). - Peter Luschny, Sep 25 2014
a(n) = A005043(n+1) + (-1)^n. - Peter Luschny, Sep 25 2014
G.f.: (1/(1 - x^2/(1 - x - x^2/(1 - x - x^2/(1 - x - x^2/(1 - ...))))))^2, a continued fraction. - Ilya Gutkovskiy, Sep 23 2017