cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A187430 Number of nonnegative walks of n steps with step sizes 1 and 2, starting and ending at 0.

Original entry on oeis.org

1, 0, 2, 2, 11, 24, 93, 272, 971, 3194, 11293, 39148, 139687, 497756, 1798002, 6517194, 23807731, 87336870, 322082967, 1192381270, 4431889344, 16527495396, 61831374003, 231973133544, 872598922407, 3290312724374, 12434632908623, 47089829065940, 178672856753641
Offset: 0

Views

Author

Keywords

Comments

Equivalently, the number of paths from (0,0) to (n,0) using steps of the form (1,2),(1,1),(1,-1) or (1,-2) and staying on or above the x-axis.
Self-convolution of A055113. - Paul D. Hanna, May 31 2015
Logarithmic derivative yields A092765 (with offset 1). - Paul D. Hanna, May 31 2015

Examples

			The 11 length-4 walks are 0,2,4,2,0; 0,2,3,2,0; 0,2,3,1,0; 0,2,1,2,0; 0,2,0,2,0; 0,2,0,1,0; 0,1,3,2,0; 0,1,3,1,0; 0,1,2,1,0; 0,1,0,2,0; and 0,1,0,1,0.
		

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<3, (n-1)*(3*n-2)/2,
         ((n+1)*(115*n^3-137*n^2-10*n+8) *a(n-1)
          +4*(2*n-1)*(5*n^3+36*n^2-26*n-12) *a(n-2)
          -36*(n-2)*(2*n-1)*(2*n-3)*(5*n+1) *a(n-3))
          / (2*(5*n-4)*(2*n+1)*(n+2)*(n+1)))
        end:
    seq(a(n), n=0..30); # Alois P. Heinz, May 16 2013
  • Mathematica
    a[n_] := (Sum[Binomial[n+1, l]*Sum[Binomial[n-2*i-1, 2*l-1]*Binomial[n-l+1, i], {i, 0, (n-1)/2}], {l, 0, n+1}] + (((-1)^n+1)*Binomial[n+1, n/2])/2)/(n+1); Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Oct 24 2016, after Vladimir Kruchinin *)
  • Maxima
    a(n):=((sum(binomial(n+1,l)*sum(binomial(n-2*i-1,2*l-1)*binomial(n-l+1,i),i,0,(n-1)/2),l,0,n+1))+(((-1)^n+1)*binomial(n+1,n/2))/2)/(n+1); /* Vladimir Kruchinin, Jun 26 2015 */
  • PARI
    al(n)={local(r,p);
    r=vector(n);r[1]=p=1;
    for(k=2,n,p*=1+x+x^3+x^4;p=(p-polcoeff(p,0)-polcoeff(p,1)*x)/x^2;r[k]=polcoeff(p,0));
    r}
    

Formula

G.f.: 1/(2*x)-(1+(1-4*x)^(1/2))*((2+2*(1-4*x)^(1/2)+12*x)^(1/2)-2)/(8*x^2). - Mark van Hoeij, May 16 2013
a(n) ~ (3/sqrt(5)-1) * 2^(2*n+1) / (sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Sep 09 2014
G.f.: exp( Sum_{n>=1} A092765(n)*x^n/n ), where A092765(n) = Sum_{k=0..n} binomial(n,k)*binomial(n,2*n-3*k). - Paul D. Hanna, May 31 2015
a(n) = ((Sum_{l=0..n+1} (C(n+1,l)*Sum_{i=0..(n-1)/2}(C(n-2*i-1,2*l-1)*C(n-l+1,i))))+(((-1)^n+1)/2*C(n+1,n/2)))/(n+1). - Vladimir Kruchinin, Jun 26 2015
Sum_{n>=0} a(n)*x^(n+1) is the compositional inverse of x*(1-x^2)^2/(1+x^3)^2. - Ira M. Gessel, Sep 19 2017
Conjecture: 1 + Sum_{n>=0} a(n)*(-1)^n x^(n+1)/(1-x)^(2*n+2) = C(x), the g.f. for the Catalan numbers A000108. - Benedict W. J. Irwin, Jan 13 2017
D-finite with recurrence 2*(2*n+1)*(n+2)*(n+1)*a(n) +(n+1)*(n^2-27*n+2)*a(n-1) +2*(-73*n^3+204*n^2-167*n+6)*a(n-2) +12*(n-3)*(2*n-3)*(4*n-7)*a(n-3) +216*(2*n-5)*(n-3)*(2*n-3)*a(n-4)=0. - R. J. Mathar, Sep 29 2020
From Seiichi Manyama, Jan 17 2024: (Start)
G.f.: (1/x) * Series_Reversion( x * (1-x)^2 / (1-x+x^2)^2 ).
a(n) = (1/(n+1)) * Sum_{k=0..floor(n/2)} binomial(2*n+2,k) * binomial(n-k-1,n-2*k). (End)