cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A187516 Numbers divisible by at least two of their digits, different and >1.

Original entry on oeis.org

24, 36, 48, 124, 126, 128, 132, 135, 162, 168, 175, 184, 204, 208, 216, 224, 234, 240, 244, 246, 248, 250, 264, 273, 276, 280, 284, 288, 306, 312, 315, 324, 328, 336, 342, 345, 348, 357, 360, 366, 369, 372, 375, 378, 384, 396, 408, 412, 420, 424, 426, 428, 432, 435, 448, 452, 456, 462, 468, 472, 476, 480, 488, 492, 495, 520, 524, 528, 540, 564, 584, 612, 624, 630, 636, 639, 642, 648
Offset: 1

Views

Author

Zak Seidov, Mar 10 2011

Keywords

Comments

There are 225 such integers < 2000, 1679 less than 10^4, 21389 less than 10^5, and 251613 less than 10^6.
Asymptotic density 17/35 = 0.485.... - Charles R Greathouse IV, Mar 11 2011

Crossrefs

Programs

  • Mathematica
    s={};Do[un=Select[Union[IntegerDigits[n]],#>1&];cnt=0;Do[d=un[[k]];If[Mod[n,d]==0,cnt++;If[cnt>1,AppendTo[s,n];Goto[ne]]],{k,Length@un}];Label[ne],{n,10000}];s
    dtdQ[n_]:=Total[Boole[Divisible[n,Union[Select[IntegerDigits[n], #>1&]]]]]>1; Select[Range[700],dtdQ]
  • PARI
    is(n)=my(d=Set(digits(n))); sum(i=1,#d, d[i]>1 && n%d[i]==0)>1 \\ Charles R Greathouse IV, Feb 11 2017

A187238 Numbers divisible by at least four of their digits, different and >1.

Original entry on oeis.org

2364, 2436, 3264, 3276, 3492, 3624, 3648, 3864, 3924, 4236, 4368, 4392, 4632, 4872, 4896, 4932, 4968, 6324, 6384, 6432, 6984, 8496, 8736, 9324, 9432, 9648, 9864, 12384, 12648, 12768, 12864, 13248, 13824, 13896, 13968, 14328, 14728, 14832, 16248, 16824, 17248, 18264
Offset: 1

Views

Author

Zak Seidov, Mar 11 2011

Keywords

Comments

There are 14594 terms < 10^6.
Asymptotic density 10/63 = 0.158.... - Charles R Greathouse IV, Mar 11 2011

Crossrefs

Programs

  • Mathematica
    numdig = 4; Select[Range[23640], Length[(u = Union[Select[IntegerDigits[#], #1 > 1 &]])] >= numdig && Plus @@ (Boole@Divisible[#, u]) >= numdig &] (* Amiram Eldar, Aug 30 2020 *)

A187551 Numbers divisible by at least seven of their digits, different and >1.

Original entry on oeis.org

23469768, 23579640, 23594760, 23674896, 23684976, 23687496, 23745960, 23746968, 23769648, 23796864, 23876496, 23897664, 23947560, 23957640, 23976540, 24367896, 24375960, 24376968, 24539760, 24679368, 24687936, 24753960, 24783696, 24869376, 24876936, 25497360, 25639740, 25749360, 25793460, 25967340
Offset: 1

Views

Author

Zak Seidov, Mar 11 2011

Keywords

Comments

There are 708 terms < 10^8.
Asymptotic density 1/180 = 0.00555.... - Charles R Greathouse IV, Mar 11 2011

Crossrefs

Subsequence of A187534.

Programs

  • Mathematica
    numdig = 7; Select[Range[25967340], Length[(u = Union[Select[IntegerDigits[#], #1 > 1 &]])] >= numdig && Plus @@ (Boole@Divisible[#, u]) >= numdig &] (* Amiram Eldar, Aug 30 2020 *)

A187565 Numbers divisible by at least eight of their digits, different and >1.

Original entry on oeis.org

1234759680, 1234857960, 1234895760, 1234958760, 1235487960, 1235679480, 1235976840, 1236795840, 1237569480, 1237589640, 1237594680, 1237695480, 1237894560, 1238549760, 1238574960, 1238597640, 1238975640, 1239547680, 1239567840, 1239756840, 1239784560, 1239847560, 1239857640, 1243579680, 1243589760, 1243879560, 1243957680, 1245378960, 1245973680, 1245983760
Offset: 1

Views

Author

Zak Seidov, Mar 11 2011

Keywords

Comments

First 11460 terms are pandigital numbers (A050278).
Asymptotic density 1/2520 = 0.000396.... - Charles R Greathouse IV, Mar 11 2011
11460 terms up to 10^10, 299275 terms up to 10^11, 6224794 terms up to 10^12. - Charles R Greathouse IV, Mar 11 2011

Crossrefs

Subsequence of A187551 (numbers divisible by at least seven ...).

Programs

  • Mathematica
    numdig = 8; Select[Range[1245983760], Length[(u = Union[Select[IntegerDigits[#], #1 > 1 &]])] >= numdig && Plus @@ (Boole@Divisible[#, u]) >= numdig &] (* Amiram Eldar, Aug 30 2020 *)
  • PARI
    s(n) = my(res=Set(digits(n)));select(x->x>1,res)
    is(n) = my(d=s(n));if(#d < 8, return(0)); sum(i=1, #d, n%d[i]==0) >= 8 \\ David A. Corneth, Aug 30 2020

A185186 Numbers divisible by at least one of their digits other than 1.

Original entry on oeis.org

2, 3, 4, 5, 6, 7, 8, 9, 12, 15, 20, 22, 24, 25, 26, 28, 30, 32, 33, 35, 36, 39, 40, 42, 44, 45, 48, 50, 52, 55, 60, 62, 63, 64, 65, 66, 70, 72, 75, 77, 80, 82, 84, 85, 88, 90, 92, 93, 95, 96, 99, 102, 104, 105, 112, 115, 120, 122, 123, 124, 125, 126, 128, 132
Offset: 1

Views

Author

Zak Seidov, Mar 11 2011

Keywords

Comments

The only primes in the sequence are 2, 3, 5, 7. No repunits are eligible.
Also, an interesting class of non-eligible integers consists of some powers of 2, 3 and 7:
"2, 4, 8-less" powers of 2, 2^m = 1, 16, 65536 with m = 0, 4, 16 (a subsequence of A034293);
"3, 9-less" powers of 3, 3^m = {1, 27, 81, 177147, 1162261467}, with m = {0, 3, 4, 11, 19} (a subsequence of A131629);
"seven-less" powers of 7, 7^m, with m = 0, 2, 3, 4, 7, 16, 22, 24, 39 (see 6th row of A136291 Array read by rows: each row is a sequence of numbers k such that n^k does not contain the digit n).
Asymptotic density 27/35 = 0.771... - Charles R Greathouse IV, Mar 11 2011
The asymptotic density of numbers having a prime digit is 1 for each prime digit. The asymptotic density of numbers being divisible by 2, 3, 5 or 7 is -Sum_{d|210, d>1}((-1)^omega(d) / d) = 27/35. Also, the asymptotic density of numbers divisible by the first n primes is r(n) where r(1) = 1/2 and r(n) = r(n - 1) + (1 - r(n - 1)) / prime(n). - David A. Corneth, May 28 2017

Crossrefs

Programs

  • Mathematica
    digDivQ[n_] := AnyTrue[IntegerDigits[n], # > 1 && Mod[n, #] == 0 &]; Select[Range[200], digDivQ] (* Giovanni Resta, May 27 2017 *)
  • PARI
    is(n) = my(d = vecsort(digits(n), , 8), t = 1); while(t<=#d&&d[t] < 2, t++); sum(i=t, #d, n%d[i]==0) > 0 \\ David A. Corneth, May 27 2017

Extensions

Name edited by Alonso del Arte, May 16 2017

A187584 Least number divisible by at least n of its digits, different and > 1.

Original entry on oeis.org

2, 24, 248, 2364, 27384, 243768, 23469768, 1234759680
Offset: 1

Views

Author

Zak Seidov, Mar 11 2011

Keywords

Comments

a(1)=2=A185186(1), a(2)=24=A187516(1),
a(3)=248=A187398(1), a(4)=2364=A187238(1),
a(5)=27384=A187533(1), a(6)=243768=A187534(1),
a(7)=23469768=A187551(1), a(8)=1234759680=A187565(1).

Crossrefs

Programs

  • Mathematica
    divQ[m_, n_] := Length[(u = Union[Select[IntegerDigits[m], # > 1 &]])] >= n && Plus @@ (Boole@Divisible[m, u]) >= n; a[n_] := Module[{k = 1}, While[! divQ[k, n], k++]; k]; Array[a, 8] (* Amiram Eldar, Aug 30 2020 *)
  • Python
    def c(n): return len(set(d for d in str(n) if d>'1' and n%int(d)==0))
    def a(n):
      m = 2*10**(n-1)
      while c(m) < n: m += 1
      return m
    print([a(n) for n in range(1, 7)]) # Michael S. Branicky, Feb 24 2021

Extensions

a(8) corrected by David A. Corneth, Aug 30 2020
Showing 1-6 of 6 results.