cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A187717 a(n) = A001676(n) / A187595(n).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 4, 6, 1, 1, 3, 2, 2, 2, 8, 16, 2, 24, 4, 4, 48, 2, 2, 12, 1, 2, 3, 3, 4, 8, 16, 32, 4, 6, 12, 120, 96, 192, 16, 96, 1, 8, 5760, 48, 96, 32, 6, 24, 16, 24, 16, 8, 3, 1, 4, 4, 4, 4, 1, 24, 16
Offset: 1

Views

Author

Paul Muljadi, Mar 18 2011

Keywords

Comments

The quotient of |Theta_n| and |bP_(n+1)| in the 1961 Kervaire-Milnor theorem.
The quotient of |S_n| and |S_n^{bp}| in the 2011 Milnor survey (see Theorem 5, Further Details, and Table 2). - Jonathan Sondow, Jun 16 2011

Extensions

More terms from Jonathan Sondow, Jun 16 2011
Terms a(56), a(57), a(63) corrected by Andrey Zabolotskiy, Nov 27 2022

A001676 Number of h-cobordism classes of smooth homotopy n-spheres.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 28, 2, 8, 6, 992, 1, 3, 2, 16256, 2, 16, 16, 523264, 24, 8, 4, 69524373504, 2, 4, 12, 67100672, 2, 3, 3, 7767211311104, 8, 32, 32, 3014494287036416, 6, 24, 120, 2303837503821447168, 192, 32, 96, 341653284209033216, 8, 11520, 48, 798366828940770681028608, 32, 12, 24, 11852230872517975212032, 24, 32, 8, 91678339751618435453288448, 1, 8, 4, 1986677733776616536315084668928, 4, 1, 24, 284423744326342962334231917756416
Offset: 1

Views

Author

Keywords

Comments

For n not equal to 4 (and possibly for all n) this is the number of oriented diffeomorphism classes of differentiable structures on the n-sphere.
a(3) = 1 follows now that the Poincaré conjecture has been proved.
a(n) for n != 4 is the order of S_n, the n-th group in Tables 1 and 2 (explained in Further Details p. 807) of Milnor 2011.
The sequence is essentially given in the rightmost column of tables 1 and 2 in Isaksen, Wang & Xu (2020). It corrects some errors in earlier work. - Andrey Zabolotskiy, Nov 27 2022

References

  • S. O. Kochman, Stable homotopy groups of spheres. A computer-assisted approach. Lecture Notes in Mathematics, 1423. Springer-Verlag, Berlin, 1990. 330 pp. ISBN: 3-540-52468-1. [Math. Rev. 91j:55016]
  • S. O. Kochman and M. E. Mahowald, On the computation of stable stems. The Cech Centennial (Boston, MA, 1993), 299-316, Contemp. Math., 181, Amer. Math. Soc., Providence, RI, 1995. [Math. Rev. 96j:55018]
  • J. P. Levine, Lectures on groups of homotopy spheres. In Algebraic and geometric topology (New Brunswick, NJ, 1983), 62-95, Lecture Notes in Math., 1126, Springer, Berlin, 1985.
  • J. W. Milnor and J. D. Stasheff, Characteristic Classes, Princeton, 1974, p. 285.
  • S. P. Novikov ed., Topology I, Encyc. of Math. Sci., vol. 12.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • H. Whitney, The work of John W. Milnor, pp. 48-50 of Proc. Internat. Congress Mathematicians, Stockholm, 1962.

Crossrefs

Extensions

More terms from Paul Muljadi, Mar 17 2011
Further terms from Jonathan Sondow, Jun 16 2011
The terms a(56), a(57), a(63) corrected by Andrey Zabolotskiy, Nov 27 2022

A189995 The order b_{4n-1} of the cyclic group S_{4n-1}^{bp} of oriented diffeomorphism classes of smooth homotopy (4n-1)-spheres that bound parallelizable manifolds, for n > 1.

Original entry on oeis.org

28, 992, 8128, 261632, 1448424448, 67100672, 1941802827776, 753623571759104, 23998307331473408, 341653284209033216, 8316321134799694594048, 740764429532373450752, 30559446583872811817762816, 496669433444154134078771167232, 17776484020396435145889494859776, 11188223110510348416175908585472
Offset: 2

Views

Author

Jonathan Sondow, Jun 15 2011

Keywords

Comments

For a(n), Milnor 2011 Theorem 5 gives the formula
2^(2*n-2)*(2^(2*n-1)-1)*numerator(4*bernoulli(n)/n)
where bernoulli(n) = abs(Bernoulli(2*n)).
See A001676 for additional comments, references, and links.

Examples

			a(2) = 2^2 * (2^3 - 1) * abs(numerator(4 * Bernoulli(4)/2)) = 4 * 7 * abs(numerator(2 * (-1/30))) = 28
		

References

  • J. W. Milnor and J. D. Stasheff, Characteristic Classes, Princeton, 1974, p. 285.

Crossrefs

Programs

  • Magma
    [2^(2*n-2)*(2^(2*n-1)-1)*Abs(Numerator(4*Bernoulli(2*n)/n)): n in [2..30]]; // G. C. Greubel, Jan 11 2018
  • Mathematica
    Table[2^(2*n-2)*(2^(2*n-1)-1)*Abs[Numerator[4*BernoulliB[2*n]/n]],{n,2,17}]

Formula

a(n) = 2^(2*n - 2) * (2^(2*n - 1) - 1) * abs(numerator(4*Bernoulli(2*n)/n)).
a(n) = A187595(4*n-1) for n > 1.
Showing 1-3 of 3 results.