cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A001676 Number of h-cobordism classes of smooth homotopy n-spheres.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 28, 2, 8, 6, 992, 1, 3, 2, 16256, 2, 16, 16, 523264, 24, 8, 4, 69524373504, 2, 4, 12, 67100672, 2, 3, 3, 7767211311104, 8, 32, 32, 3014494287036416, 6, 24, 120, 2303837503821447168, 192, 32, 96, 341653284209033216, 8, 11520, 48, 798366828940770681028608, 32, 12, 24, 11852230872517975212032, 24, 32, 8, 91678339751618435453288448, 1, 8, 4, 1986677733776616536315084668928, 4, 1, 24, 284423744326342962334231917756416
Offset: 1

Views

Author

Keywords

Comments

For n not equal to 4 (and possibly for all n) this is the number of oriented diffeomorphism classes of differentiable structures on the n-sphere.
a(3) = 1 follows now that the Poincaré conjecture has been proved.
a(n) for n != 4 is the order of S_n, the n-th group in Tables 1 and 2 (explained in Further Details p. 807) of Milnor 2011.
The sequence is essentially given in the rightmost column of tables 1 and 2 in Isaksen, Wang & Xu (2020). It corrects some errors in earlier work. - Andrey Zabolotskiy, Nov 27 2022

References

  • S. O. Kochman, Stable homotopy groups of spheres. A computer-assisted approach. Lecture Notes in Mathematics, 1423. Springer-Verlag, Berlin, 1990. 330 pp. ISBN: 3-540-52468-1. [Math. Rev. 91j:55016]
  • S. O. Kochman and M. E. Mahowald, On the computation of stable stems. The Cech Centennial (Boston, MA, 1993), 299-316, Contemp. Math., 181, Amer. Math. Soc., Providence, RI, 1995. [Math. Rev. 96j:55018]
  • J. P. Levine, Lectures on groups of homotopy spheres. In Algebraic and geometric topology (New Brunswick, NJ, 1983), 62-95, Lecture Notes in Math., 1126, Springer, Berlin, 1985.
  • J. W. Milnor and J. D. Stasheff, Characteristic Classes, Princeton, 1974, p. 285.
  • S. P. Novikov ed., Topology I, Encyc. of Math. Sci., vol. 12.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • H. Whitney, The work of John W. Milnor, pp. 48-50 of Proc. Internat. Congress Mathematicians, Stockholm, 1962.

Crossrefs

Extensions

More terms from Paul Muljadi, Mar 17 2011
Further terms from Jonathan Sondow, Jun 16 2011
The terms a(56), a(57), a(63) corrected by Andrey Zabolotskiy, Nov 27 2022

A053381 Maximal number of linearly independent smooth nowhere-zero vector fields on a (2n+1)-sphere.

Original entry on oeis.org

1, 3, 1, 7, 1, 3, 1, 8, 1, 3, 1, 7, 1, 3, 1, 9, 1, 3, 1, 7, 1, 3, 1, 8, 1, 3, 1, 7, 1, 3, 1, 11, 1, 3, 1, 7, 1, 3, 1, 8, 1, 3, 1, 7, 1, 3, 1, 9, 1, 3, 1, 7, 1, 3, 1, 8, 1, 3, 1, 7, 1, 3, 1, 15, 1, 3, 1, 7, 1, 3, 1, 8, 1, 3, 1, 7, 1, 3, 1, 9, 1, 3, 1, 7, 1, 3, 1, 8, 1, 3, 1, 7, 1, 3, 1, 11, 1, 3, 1, 7, 1, 3
Offset: 0

Views

Author

Warren D. Smith, Jan 06 2000

Keywords

Comments

The corresponding terms for a 2n-sphere are all 0 ("you can't comb the hair on a billiard ball"). The "3" and "7" come from the quaternions and octonions.
b(n) = a(n-1): b(2^e) = ((e+1) idiv 4) + 2^((e+1) mod 4) - 1, b(p^e) = 1, p>2. - Christian G. Bower, May 18 2005
a(n-1) is multiplicative. - Christian G. Bower, Jun 03 2005

Crossrefs

For another version see A003484. Cf. A189995, A001676.

Programs

  • C
    int MaxLinInd(int n){ /* Returns max # linearly indep smooth nowhere zero * vector fields on S^{n-1}, n=1,2,... */ int b,c,d,rho; b = 0; while((n & 1)==0){ n /= 2; b++; } c = b & 3; d = (b - c)/4; rho = (1 << c) + 8*d; return( rho - 1); }
    
  • C
    int MaxLinInd(int n) { int b = _builtin_ctz(n); return (1<<b%4) + b/4*8 - 1; } /* _Jeremy Tan, Apr 09 2021 */
  • Maple
    with(numtheory): for n from 1 to 601 by 2 do c := irem(ifactors(n+1)[2,1,2],4): d := iquo(ifactors(n+1)[2,1,2],4): printf(`%d,`, 2^c+8*d-1) od:
    nmax:=101: A047530 := proc(n): ceil(n/4) + 2*ceil((n-1)/4) + 4*ceil((n-2)/4) + ceil((n-3)/4) end: for p from 0 to ceil(simplify(log[2](nmax))) do for n from 0 to ceil(nmax/(p+2))+1 do A053381((2*n+1)*2^p-1) := A047530(p+1): od: od: seq(A053381(n), n=0..nmax); # Johannes W. Meijer, Jun 07 2011, revised Jan 29 2013
  • Mathematica
    a[n_] := Module[{b, c, d, rho, n0}, n0 = 2*n; b = 0; While[BitAnd[n0, 1] == 0, n0 /= 2; b++]; c = BitAnd[b, 3]; d = (b - c)/4; rho = 2^c + 8*d; Return[rho - 1]]; Table[a[n], {n, 1, 102}] (* Jean-François Alcover, May 16 2013, translated from C *)

Formula

Let f(n) be the number of linearly independent smooth nowhere-zero vector fields on an n-sphere. Then f(n) = 2^c + 8d - 1 where n+1 = (2a+1) 2^b and b = c+4d and 0 <= c <= 3. f(n) = 0 if n is even.
a((2*n+1)*2^p-1) = A047530(p+1), p >= 0 and n >= 0. a(2*n) = 1, n >= 0, and a(2^p-1) = A047530(p+1), p >= 0. - Johannes W. Meijer, Jun 07 2011
a(n) = A209675(n+1) - 1. - Reinhard Zumkeller, Mar 11 2012
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 10/3. - Amiram Eldar, Nov 29 2022

Extensions

More terms from James Sellers, Jun 01 2000

A228689 a(n) = A001676(4*n + 3).

Original entry on oeis.org

1, 28, 992, 16256, 523264, 69524373504, 67100672, 7767211311104, 3014494287036416, 2303837503821447168, 341653284209033216, 798366828940770681028608, 11852230872517975212032, 91678339751618435453288448, 1986677733776616536315084668928, 284423744326342962334231917756416
Offset: 0

Views

Author

N. J. A. Sloane, Aug 30 2013

Keywords

Crossrefs

Extensions

Term a(15) corrected by Andrey Zabolotskiy, Nov 27 2022

A047680 a(n) = 2^(2*n-2) * (2^(2*n-1)-1) * numerator(|Bernoulli(4*n)|/n).

Original entry on oeis.org

1, 28, 342736, 29398976, 22841912576, 495449389339648, 113828913905979392, 4138783908783021080576, 226044736813811127599528869888, 35882867158508587149623987273728, 5564179808875681941887049052192768, 197363311803624016534960016288517315362816
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A189995 (similar formula).

Programs

  • Maple
    (-1)*2^(2*n-2)*(2^(2*n-1)-1)*numer(bernoulli(4*n)/n);
  • PARI
    a(n) = 2^(2*n-2) * (2^(2*n-1)-1) * numerator(abs(bernfrac(4*n))/n); \\ Michel Marcus, Nov 30 2022

Extensions

Edited by Andrey Zabolotskiy, Nov 30 2022
Showing 1-4 of 4 results.