cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A083064 Square number array T(n,k) = (k*(k+2)^n+1)/(k+1) read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 5, 1, 1, 4, 11, 14, 1, 1, 5, 19, 43, 41, 1, 1, 6, 29, 94, 171, 122, 1, 1, 7, 41, 173, 469, 683, 365, 1, 1, 8, 55, 286, 1037, 2344, 2731, 1094, 1, 1, 9, 71, 439, 2001, 6221, 11719, 10923, 3281, 1, 1, 10, 89, 638, 3511, 14006, 37325, 58594, 43691, 9842, 1
Offset: 0

Views

Author

Paul Barry, Apr 21 2003

Keywords

Examples

			Rows begin:
1  1   1    1     1      1       1        1         1 ...
1  2   5   14    41    122     365     1094      3281 ...  A007051
1  3  11   43   171    683    2731    10923     43691 ...  A007583
1  4  19   94   469   2344   11719    58594    292969 ...  A083065
1  5  29  173  1037   6221   37325   223949   1343693 ...  A083066
1  6  41  286  2001  14006   98041   686286   4804001 ...  A083067
1  7  55  439  3511  28087  224695  1797559  14380471 ...  A083068
1  8  71  638  5741  51668  465011  4185098  37665881 ...  A187709
1  9  89  889  8889  88889  888889  8888889  88888889 ...  A059482
1 10 109 1198 13177 144946 1594405 17538454 192922993 ...  A199760, etc.
Column 2: A000027;
column 3: A028387;
column 4: A083074;
column 5: A125082;
column 6: A125083.
Diagonals:
1,  2,  11,   94,  1037,  14006, ... A083069;
1,  3,  19,  173,  2001,  28087, ... A083071;
1,  4,  29,  286,  3511,  51668, ... A083072;
1,  5,  41,  439,  5741,  88889, ... A083073;
1,  5,  43,  469,  6221,  98041, ... A083070;
1, 14, 171, 2344, 37325, 686286, ... A191690.
Triangle begins:
1;
1, 1;
1, 2, 1;
1, 3, 5, 1;
1, 4, 11, 14, 1;
1, 5, 19, 43, 41, 1;
1, 6, 29, 94, 171, 122, 1; etc.
		

Crossrefs

Extensions

Edited by Bruno Berselli, Jun 21 2013

A199566 a(n) = (7*9^n + 1)/2.

Original entry on oeis.org

4, 32, 284, 2552, 22964, 206672, 1860044, 16740392, 150663524, 1355971712, 12203745404, 109833708632, 988503377684, 8896530399152, 80068773592364, 720618962331272, 6485570660981444, 58370135948832992, 525331223539496924, 4727981011855472312, 42551829106699250804
Offset: 0

Views

Author

Vincenzo Librandi, Nov 08 2011

Keywords

Crossrefs

Programs

  • Magma
    [(7*9^n+1)/2: n in [0..30]];
  • Mathematica
    (7*9^Range[0,20]+1)/2 (* or *) LinearRecurrence[{10,-9},{4,32},20] (* Harvey P. Dale, Dec 08 2012 *)

Formula

a(n) = 4*A187709(n).
a(n) = 9*a(n-1) - 4 for n > 0.
a(n) = 10*a(n-1) - 9*a(n-2) for n > 1.
G.f.: 4*(1-2*x)/((1-x)*(1-9*x)).
From Elmo R. Oliveira, Aug 23 2024: (Start)
E.g.f.: exp(x)*(7*exp(8*x) + 1)/2.
a(n) = A199567(n)/2. (End)

A199567 a(n) = 7*9^n + 1.

Original entry on oeis.org

8, 64, 568, 5104, 45928, 413344, 3720088, 33480784, 301327048, 2711943424, 24407490808, 219667417264, 1977006755368, 17793060798304, 160137547184728, 1441237924662544, 12971141321962888, 116740271897665984, 1050662447078993848, 9455962023710944624, 85103658213398501608
Offset: 0

Views

Author

Vincenzo Librandi, Nov 08 2011

Keywords

Crossrefs

Programs

Formula

a(n) = 8*A187709(n).
a(n) = 9*a(n-1) - 8 for n > 0.
a(n) = 10*a(n-1) - 9*a(n-2) for n > 1.
G.f.: 8*(1-2*x)/((1-x)*(1-9*x)).
a(n) = 4*(A096046(n) + 1). - Martin Ettl, Nov 13 2012
From Elmo R. Oliveira, Aug 23 2024: (Start)
E.g.f.: exp(x)*(7*exp(8*x) + 1).
a(n) = 2*A199566(n). (End)

A270472 Expansion of g.f. (1-2*x)/(1-9*x).

Original entry on oeis.org

1, 7, 63, 567, 5103, 45927, 413343, 3720087, 33480783, 301327047, 2711943423, 24407490807, 219667417263, 1977006755367, 17793060798303, 160137547184727, 1441237924662543, 12971141321962887, 116740271897665983, 1050662447078993847, 9455962023710944623, 85103658213398501607
Offset: 0

Views

Author

Colin Barker, Mar 17 2016

Keywords

Crossrefs

Cf. A001019 (powers of 9), A005032, A187709 (partial sums).
Cf. A055275: (1-x)/(1-9*x); A092810: (1-3*x)/(1-9*x).

Programs

  • Mathematica
    CoefficientList[Series[(1 - 2 x)/(1 - 9 x), {x, 0, 20}], x] (* Michael De Vlieger, Mar 18 2016 *)
  • PARI
    Vec((1-2*x)/(1-9*x) + O(x^30))

Formula

G.f.: (1-2*x)/(1-9*x).
a(n) = 9*a(n-1) for n>1.
a(n) = 7*9^(n-1) for n>0.
a(n) = A005032(2*n-2). - R. J. Mathar, Jan 28 2025
E.g.f.: (7*exp(9*x) + 2)/9. - Elmo R. Oliveira, Mar 25 2025

A199565 a(n) = (7*9^n + 1)/4.

Original entry on oeis.org

2, 16, 142, 1276, 11482, 103336, 930022, 8370196, 75331762, 677985856, 6101872702, 54916854316, 494251688842, 4448265199576, 40034386796182, 360309481165636, 3242785330490722, 29185067974416496, 262665611769748462, 2363990505927736156, 21275914553349625402, 191483230980146628616
Offset: 0

Views

Author

Vincenzo Librandi, Nov 08 2011

Keywords

Crossrefs

Programs

  • Magma
    [(7*9^n+1)/4: n in [0..30]];
  • Mathematica
    LinearRecurrence[{10,-9},{2,16},30] (* Harvey P. Dale, Mar 14 2015 *)

Formula

a(n) = 2*A187709(n).
a(n) = 9*a(n-1) - 2.
a(n) = 10*a(n-1) - 9*a(n-2).
G.f.: 2*(1-2*x)/((1-x)*(1-9*x)).
From Elmo R. Oliveira, Mar 02 2025: (Start)
E.g.f.: exp(x)*(7*exp(8*x) + 1)/4.
a(n) = A199566(n)/2 = A199567(n)/4. (End)

A120468 Expansion of -2*x*(-8-12*x+9*x^2) / ( (x-1)*(3*x-1)*(3*x+1)*(1+x) ).

Original entry on oeis.org

0, 16, 24, 142, 240, 1276, 2184, 11482, 19680, 103336, 177144, 930022, 1594320, 8370196, 14348904, 75331762, 129140160, 677985856, 1162261464, 6101872702, 10460353200, 54916854316, 94143178824, 494251688842, 847288609440
Offset: 0

Views

Author

Roger L. Bagula and Gary W. Adamson, Jul 04 2006

Keywords

Programs

  • Mathematica
    LinearRecurrence[{0,10,0,-9},{0,16,24,142},30] (* Harvey P. Dale, Dec 06 2023 *)

Formula

8*a(n) = (-1)^(n+1) * (13+3^(n+2)) + 11*(3^(n+1) -1). - R. J. Mathar, Nov 07 2011
a(2n+1) = 2*A187709(n+1). - R. J. Mathar, Nov 07 2011
Showing 1-6 of 6 results.