A083064
Square number array T(n,k) = (k*(k+2)^n+1)/(k+1) read by antidiagonals.
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 3, 5, 1, 1, 4, 11, 14, 1, 1, 5, 19, 43, 41, 1, 1, 6, 29, 94, 171, 122, 1, 1, 7, 41, 173, 469, 683, 365, 1, 1, 8, 55, 286, 1037, 2344, 2731, 1094, 1, 1, 9, 71, 439, 2001, 6221, 11719, 10923, 3281, 1, 1, 10, 89, 638, 3511, 14006, 37325, 58594, 43691, 9842, 1
Offset: 0
Rows begin:
1 1 1 1 1 1 1 1 1 ...
1 2 5 14 41 122 365 1094 3281 ... A007051
1 3 11 43 171 683 2731 10923 43691 ... A007583
1 4 19 94 469 2344 11719 58594 292969 ... A083065
1 5 29 173 1037 6221 37325 223949 1343693 ... A083066
1 6 41 286 2001 14006 98041 686286 4804001 ... A083067
1 7 55 439 3511 28087 224695 1797559 14380471 ... A083068
1 8 71 638 5741 51668 465011 4185098 37665881 ... A187709
1 9 89 889 8889 88889 888889 8888889 88888889 ... A059482
1 10 109 1198 13177 144946 1594405 17538454 192922993 ... A199760, etc.
Column 2: A000027;
column 3: A028387;
column 4: A083074;
column 5: A125082;
column 6: A125083.
Diagonals:
1, 2, 11, 94, 1037, 14006, ... A083069;
1, 3, 19, 173, 2001, 28087, ... A083071;
1, 4, 29, 286, 3511, 51668, ... A083072;
1, 5, 41, 439, 5741, 88889, ... A083073;
1, 5, 43, 469, 6221, 98041, ... A083070;
1, 14, 171, 2344, 37325, 686286, ... A191690.
Triangle begins:
1;
1, 1;
1, 2, 1;
1, 3, 5, 1;
1, 4, 11, 14, 1;
1, 5, 19, 43, 41, 1;
1, 6, 29, 94, 171, 122, 1; etc.
Cf. rows:
A007051,
A007583,
A059482,
A083065 -
A083068,
A187709,
A199760; columns:
A000027,
A028387,
A083074,
A125082,
A125083; diagonals:
A083069 -
A083073,
A191690.
A199566
a(n) = (7*9^n + 1)/2.
Original entry on oeis.org
4, 32, 284, 2552, 22964, 206672, 1860044, 16740392, 150663524, 1355971712, 12203745404, 109833708632, 988503377684, 8896530399152, 80068773592364, 720618962331272, 6485570660981444, 58370135948832992, 525331223539496924, 4727981011855472312, 42551829106699250804
Offset: 0
-
[(7*9^n+1)/2: n in [0..30]];
-
(7*9^Range[0,20]+1)/2 (* or *) LinearRecurrence[{10,-9},{4,32},20] (* Harvey P. Dale, Dec 08 2012 *)
A199567
a(n) = 7*9^n + 1.
Original entry on oeis.org
8, 64, 568, 5104, 45928, 413344, 3720088, 33480784, 301327048, 2711943424, 24407490808, 219667417264, 1977006755368, 17793060798304, 160137547184728, 1441237924662544, 12971141321962888, 116740271897665984, 1050662447078993848, 9455962023710944624, 85103658213398501608
Offset: 0
A270472
Expansion of g.f. (1-2*x)/(1-9*x).
Original entry on oeis.org
1, 7, 63, 567, 5103, 45927, 413343, 3720087, 33480783, 301327047, 2711943423, 24407490807, 219667417263, 1977006755367, 17793060798303, 160137547184727, 1441237924662543, 12971141321962887, 116740271897665983, 1050662447078993847, 9455962023710944623, 85103658213398501607
Offset: 0
-
CoefficientList[Series[(1 - 2 x)/(1 - 9 x), {x, 0, 20}], x] (* Michael De Vlieger, Mar 18 2016 *)
-
Vec((1-2*x)/(1-9*x) + O(x^30))
A199565
a(n) = (7*9^n + 1)/4.
Original entry on oeis.org
2, 16, 142, 1276, 11482, 103336, 930022, 8370196, 75331762, 677985856, 6101872702, 54916854316, 494251688842, 4448265199576, 40034386796182, 360309481165636, 3242785330490722, 29185067974416496, 262665611769748462, 2363990505927736156, 21275914553349625402, 191483230980146628616
Offset: 0
-
[(7*9^n+1)/4: n in [0..30]];
-
LinearRecurrence[{10,-9},{2,16},30] (* Harvey P. Dale, Mar 14 2015 *)
A120468
Expansion of -2*x*(-8-12*x+9*x^2) / ( (x-1)*(3*x-1)*(3*x+1)*(1+x) ).
Original entry on oeis.org
0, 16, 24, 142, 240, 1276, 2184, 11482, 19680, 103336, 177144, 930022, 1594320, 8370196, 14348904, 75331762, 129140160, 677985856, 1162261464, 6101872702, 10460353200, 54916854316, 94143178824, 494251688842, 847288609440
Offset: 0
-
LinearRecurrence[{0,10,0,-9},{0,16,24,142},30] (* Harvey P. Dale, Dec 06 2023 *)
Showing 1-6 of 6 results.