cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A187710 a(n) = n^2 + n + 10.

Original entry on oeis.org

10, 12, 16, 22, 30, 40, 52, 66, 82, 100, 120, 142, 166, 192, 220, 250, 282, 316, 352, 390, 430, 472, 516, 562, 610, 660, 712, 766, 822, 880, 940, 1002, 1066, 1132, 1200, 1270, 1342, 1416, 1492, 1570, 1650, 1732, 1816, 1902, 1990, 2080, 2172, 2266, 2362, 2460
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [n^2 + n + 10: n in [0..50]]; // G. C. Greubel, Nov 06 2018
  • Mathematica
    f[n_] := n^2 + n + 10; f[Range[0, 100]]
    LinearRecurrence[{3, -3, 1}, {10, 12, 16}, 50] (* Harvey P. Dale, Jan 18 2014 *)
  • PARI
    a(n)=n^2+n+10 \\ Charles R Greathouse IV, Jun 17 2017
    

Formula

a(0)=10, a(1)=12, a(2)=16; for n>2, a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Harvey P. Dale, Jan 18 2014
From Bruno Berselli, Oct 20 2016: (Start)
G.f.: 2*(5 - 9*x + 5*x^2)/(1 - x)^3.
a(n) = 2*A167499(n-1) for n>0.
a(n) = Sum_{i=n-5..n+5} i*(i+1)/11. (End)
E.g.f.: (x^2 + 2*x + 10)*exp(x). - G. C. Greubel, Nov 06 2018
Sum_{n>=0} 1/a(n) = Pi*tanh(Pi*sqrt(39)/2)/sqrt(39). - Amiram Eldar, Jan 17 2021

Extensions

Offset changed to 0 from Bruno Berselli, Oct 20 2016