cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A187756 a(n) = n^2 * (4*n^2 - 1) / 3.

Original entry on oeis.org

0, 1, 20, 105, 336, 825, 1716, 3185, 5440, 8721, 13300, 19481, 27600, 38025, 51156, 67425, 87296, 111265, 139860, 173641, 213200, 259161, 312180, 372945, 442176, 520625, 609076, 708345, 819280, 942761, 1079700, 1231041, 1397760, 1580865, 1781396, 2000425
Offset: 0

Views

Author

Michael Somos, Jan 03 2013

Keywords

Examples

			G.f. = x + 20*x^2 + 105*x^3 + 336*x^4 + 825*x^5 + 1716*x^6 + 3185*x^7 + ...
		

Crossrefs

Programs

  • Magma
    [n^2*(4*n^2-1)/3: n in [0..50]]; // G. C. Greubel, Aug 10 2018
  • Mathematica
    LinearRecurrence[{5,-10,10,-5,1},{0,1,20,105,336},40] (* Harvey P. Dale, Mar 26 2016 *)
    a[ n_] := SeriesCoefficient[ x * (1 + x) * (1 + 14*x + x^2) / (1 - x)^5, {x, 0, Abs[n]}]; (* Michael Somos, Dec 26 2016 *)
  • Maxima
    A187756(n):=n^2*(4*n^2-1)/3$ makelist(A187756(n),n,0,20); /* Martin Ettl, Jan 07 2013 */
    
  • PARI
    {a(n) = polcoeff( x * (1 + x) * (1 + 14*x + x^2) / (1 - x)^5 + x * O(x^n), abs(n))};
    

Formula

G.f.: x * (1 + x) * (1 + 14*x + x^2) / (1 - x)^5.
a(n) = a(-n) for all n in Z.
a(n) = n * A000447(n).
G.f. A144853(x) = 1 / (1 - a(1)*x / (1 - a(2)*x / (1 - a(3)*x / ... ))).