cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A187795 Sum of the abundant divisors of n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 12, 0, 0, 0, 0, 0, 18, 0, 20, 0, 0, 0, 36, 0, 0, 0, 0, 0, 30, 0, 0, 0, 0, 0, 66, 0, 0, 0, 60, 0, 42, 0, 0, 0, 0, 0, 84, 0, 0, 0, 0, 0, 72, 0, 56, 0, 0, 0, 122, 0, 0, 0, 0, 0, 66, 0, 0, 0, 70, 0, 162, 0, 0, 0, 0, 0, 78, 0, 140, 0, 0, 0, 138, 0, 0, 0, 88, 0, 138, 0, 0, 0, 0, 0, 180
Offset: 1

Views

Author

Timothy L. Tiffin, Jan 06 2013

Keywords

Comments

Sum of divisors d of n with sigma(d) > 2*d.
a(n) = n when n is a primitive abundant number (A091191). - Alonso del Arte, Jan 19 2013

Examples

			a(12) = 12 because the divisors of 12 are 1, 2, 3, 4, 6, 12, but of those only 12 is abundant.
a(13) = 0 because the divisors of 13 are 1 and 13, neither of which is abundant.
		

Crossrefs

Programs

  • Maple
    A187795 := proc(n)
        local a,d;
        a :=0 ;
        for d in numtheory[divisors](n) do
            if numtheory[sigma](d) > 2* d then
                a := a+d ;
            end if;
        end do:
        return a;
    end proc:
    seq(A187795(n),n=1..100) ; # R. J. Mathar, Apr 27 2017
  • Mathematica
    Table[Total@ Select[Divisors@ n, DivisorSigma[1, #] > 2 # &], {n, 96}] (* Michael De Vlieger, Jul 16 2016 *)
  • PARI
    a(n)=sumdiv(n,d,(sigma(d,-1)>2)*d) \\ Charles R Greathouse IV, Jan 15 2013
    
  • Python
    from sympy import divisors, divisor_sigma
    def A187795(n): return sum(d for d in divisors(n,generator=True) if divisor_sigma(d) > 2*d) # Chai Wah Wu, Sep 22 2021

Formula

From Antti Karttunen, Nov 14 2017: (Start)
a(n) = Sum_{d|n} A294937(d)*d.
a(n) = A294889(n) + (A294937(n)*n).
If A294889(n) > 0, then a(n) = A294889(n)+n, otherwise a(n) = A294930(n)*n.
a(n) + A187794(n) + A187793(n) = A000203(n).
(End)

A187793 Sum of the deficient divisors of n.

Original entry on oeis.org

1, 3, 4, 7, 6, 6, 8, 15, 13, 18, 12, 10, 14, 24, 24, 31, 18, 15, 20, 22, 32, 36, 24, 18, 31, 42, 40, 28, 30, 36, 32, 63, 48, 54, 48, 19, 38, 60, 56, 30, 42, 48, 44, 84, 78, 72, 48, 34, 57, 93, 72, 98, 54, 42, 72, 36, 80, 90, 60, 40, 62, 96, 104, 127, 84, 72, 68, 126, 96, 74, 72, 27
Offset: 1

Views

Author

Timothy L. Tiffin, Jan 06 2013

Keywords

Comments

Sum of divisors d of n with sigma(d) < 2*d.
a(n) = sigma(n) when n is itself also deficient.
Also, a(n) agrees with the terms in A117553 except when n is a multiple (k > 1) of either a perfect number or a primitive abundant number.
Notice that a(1) = 1. The remaining fixed points are given by A125310. - Timothy L. Tiffin, Jun 23 2016
a(A028982(n)) is an odd integer. Also, if n is an odd abundant number that is not a perfect square and n has an odd number of abundant divisors (e.g., 945 has one abundant divisor and 4725 has three abundant divisors), then a(n) will also be odd: a(945) = 975 and a(4725) = 2675. - Timothy L. Tiffin, Jul 18 2016

Examples

			a(12) = 10 because the divisors of 12 are 1, 2, 3, 4, 6, 12; of these, 1, 2, 3, 4 are deficient, and they add up to 10.
		

Crossrefs

Programs

  • Maple
    A187793 := proc(n)
        local a,d ;
        a := 0 ;
        for d in numtheory[divisors](n) do
            if numtheory[sigma](d) < 2*d then
                a := a+d ;
            end if ;
        end do:
        a ;
    end proc:# R. J. Mathar, May 08 2019
  • Mathematica
    Table[Total@ Select[Divisors@ n, DivisorSigma[1, #] < 2 # &], {n, 72}] (* Michael De Vlieger, Jul 18 2016 *)
  • PARI
    a(n)=sumdiv(n,d,if(sigma(d,-1)<2,d,0)) \\ Charles R Greathouse IV, Jan 07 2013

Formula

From Antti Karttunen, Nov 14 2017: (Start)
a(n) = Sum_{d|n} A294934(d)*d.
a(n) = A294886(n) + (A294934(n)*n).
a(n) + A187794(n) + A187795(n) = A000203(n).
(End)

Extensions

a(54) corrected by Charles R Greathouse IV, Jan 07 2013

A296075 Sum of deficiencies of divisors of n.

Original entry on oeis.org

1, 2, 3, 3, 5, 4, 7, 4, 8, 8, 11, 1, 13, 12, 13, 5, 17, 6, 19, 7, 19, 20, 23, -10, 24, 24, 22, 13, 29, 4, 31, 6, 31, 32, 33, -16, 37, 36, 37, -2, 41, 12, 43, 25, 30, 44, 47, -37, 48, 34, 49, 31, 53, 8, 53, 6, 55, 56, 59, -49, 61, 60, 46, 7, 63, 28, 67, 43, 67, 36, 71, -78, 73, 72, 58, 49, 75, 36, 79, -27, 63, 80, 83, -47, 83
Offset: 1

Views

Author

Antti Karttunen, Dec 04 2017

Keywords

Comments

a(n)=0 for n in A066218. Are 1 and 12 the only solutions to a(n)=1? - Robert Israel, Dec 04 2017

Examples

			For n = 6, whose divisors are 1, 2, 3, 6, their deficiencies are 1, 1, 2, 0, thus a(6) = 1 + 1 + 2 + 0 = 4.
For n = 24, whose divisors are 1, 2, 3, 4, 6, 8, 12, 24, their deficiencies are 1, 1, 2, 1, 0, 1, -4, -12, thus a(24) = 1 + 1 + 2 + 1 + 0 + 1 + -4 + -12 = -10.
		

Crossrefs

Programs

  • Maple
    f:= n -> add(2*t-numtheory:-sigma(t), t=numtheory:-divisors(n)):
    map(f, [$1..100]); # Robert Israel, Dec 04 2017
  • Mathematica
    f1[p_, e_] := (p^(e+1)-1)/(p-1); f2[p_, e_] := (p*(p^(e+1)-1) - (p-1)*(e+1))/(p-1)^2; a[1] = 1; a[n_] := Module[{f = FactorInteger[n]}, 2 * Times @@ f1 @@@ f - Times @@ f2 @@@ f]; Array[a, 100] (* Amiram Eldar, Dec 04 2023 *)
  • PARI
    A033879(n) = ((2*n)-sigma(n));
    A296075(n) = sumdiv(n,d,A033879(d));

Formula

a(n) = Sum_{d|n} A033879(d).
a(n) = A296074(n) + A033879(n).
If m and n are coprime, a(m*n) = 2*a(m)*A000203(n)+2*a(n)*A000203(m)-a(m)*a(n)-2*A000203(m)*A000203(n). - Robert Israel, Dec 04 2017
a(n) = 2*A000203(n) - A007429(n). - Ridouane Oudra, Jul 29 2019
Sum_{k=1..n} a(k) ~ (Pi^2/6 - Pi^4/72) * n^2. - Amiram Eldar, Dec 04 2023

A185351 Sums of distinct perfect numbers.

Original entry on oeis.org

0, 6, 28, 34, 496, 502, 524, 530, 8128, 8134, 8156, 8162, 8624, 8630, 8652, 8658, 33550336, 33550342, 33550364, 33550370, 33550832, 33550838, 33550860, 33550866, 33558464, 33558470, 33558492, 33558498, 33558960, 33558966, 33558988, 33558994, 8589869056
Offset: 1

Views

Author

Keywords

Comments

The first 131072 terms of this sequence are even. Conjecturally, all terms are even.
Numbers in the range of the sum of perfect divisors function (A187794). - Timothy L. Tiffin, Jul 13 2016

Examples

			502 = 496 + 6, where 496 and 6 are perfect.
		

Crossrefs

Programs

  • Mathematica
    With[{perf = Select[Range[10000], DivisorSigma[1, #] == 2# &]}, Rest[Union[Total/@Subsets[perf]]]] (* Harvey P. Dale, Feb 07 2012 *)
  • PARI
    vecsum(v)=sum(i=1,#v,v[i]);
    v=apply(n->binomial(n+1,2), select(k->ispseudoprime(k), vector(15,n,2^prime(n)-1))); u=List();for(i=0,2^#v-1,listput(u,vecsum(vecextract(v,i))));vecsort(Vec(u)) \\ Charles R Greathouse IV, Feb 09 2012

A357462 Numbers whose sum of deficient divisors is equal to their sum of nondeficient divisors.

Original entry on oeis.org

6, 28, 30, 42, 66, 78, 102, 114, 138, 150, 174, 186, 222, 246, 258, 282, 294, 308, 318, 330, 354, 364, 366, 390, 402, 426, 438, 462, 474, 476, 496, 498, 510, 532, 534, 546, 570, 582, 606, 618, 642, 644, 654, 678, 690, 714, 726, 750, 762, 786, 798, 812, 822, 834
Offset: 1

Views

Author

Amiram Eldar, Sep 29 2022

Keywords

Comments

Numbers k such that A187793(k) = A187794(k) + A187795(k).
All the terms are nondeficient numbers (A023196).
All the perfect numbers (A000396) are terms.
This sequence is infinite: if k = 2^(p-1)*(2^p-1) is an even perfect number and q > 2^p-1 is a prime, then k*q is a term.
Since the total sum of divisors of any term is even, none of the terms are squares or twice squares.
Are there odd terms in this sequence? There are none below 10^10.
The numbers of terms not exceeding 10^k, for k = 1, 2, ..., are 1, 6, 63, 605, 6164, 61291, 614045, 6139193, 61382607, 613861703, ... . Apparently, the asymptotic density of this sequence exists and equals 0.06138... .

Examples

			6 is a term since the sum of its deficient divisors, 1 + 2 + 3 is equal to 6, its only nondeficient divisor.
30 is a term since the sum of its deficient divisors, 1 + 2 + 3 + 5 + 10 + 15 = 36 is equal to the sum of its nondeficient divisors, 6 + 30 = 36.
		

Crossrefs

Subsequence of A023196 and A028983.
A000396 is a subsequence.

Programs

  • Mathematica
    q[n_] := DivisorSum[n, If[DivisorSigma[-1, #] < 2, #, -#] &] == 0; Select[Range[1000], q]
  • PARI
    is(n) = sumdiv(n, d, if(sigma(d,-1) < 2, d, -d)) == 0;

A272978 Numbers not in the range of the sum of perfect divisors function.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 29, 30, 31, 32, 33, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80
Offset: 1

Views

Author

Timothy L. Tiffin, Jul 13 2016

Keywords

Comments

Numbers which do not appear in A185351 or A187794; that is, there is no integer N whose sum of perfect divisors is equal to a(n) for any n.

Crossrefs

Cf. A000396, subsequence of A132999, A185351 (complement), A187794.
Showing 1-6 of 6 results.