A187965 Numbers k such that 2^k - 1 and 2^k + 1 are not squarefree.
21, 30, 63, 78, 90, 105, 110, 147, 150, 189, 204, 210, 231, 234, 270, 273, 310, 315, 330, 340, 357, 390, 399, 441, 450, 465, 483, 510, 525, 546, 550, 567, 570, 609, 612, 630, 651, 657, 666, 690, 693, 702, 735, 750, 759, 770, 777, 810, 819, 858, 861, 870, 903, 930, 945, 987, 990, 1014, 1020, 1029, 1050, 1071
Offset: 1
Keywords
Examples
2^21 - 1 = 7^2 * 127 * 337, 2^21 + 1 = 3^2 * 43 * 5419.
Crossrefs
Programs
-
Magma
[n: n in [1..250] | not IsSquarefree(2^n-1) and not IsSquarefree(2^n+1)]; // Vincenzo Librandi, Nov 23 2015
-
Mathematica
Select[ Range@ 500, !(SquareFreeQ[2^# - 1] || SquareFreeQ[2^# + 1]) &] Select[Range[1100],NoneTrue[2^#+{1,-1},SquareFreeQ]&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jun 22 2019 *)
-
PARI
is(n) = !issquarefree(2^n-1) && !issquarefree(2^n+1); for(n=1, 1e3, if(is(n), print1(n, ", "))) \\ Altug Alkan, Nov 22 2015
Extensions
More terms from Joerg Arndt, Nov 23 2015
Comments