cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A188161 a(n) = 2*4^n + 3.

Original entry on oeis.org

5, 11, 35, 131, 515, 2051, 8195, 32771, 131075, 524291, 2097155, 8388611, 33554435, 134217731, 536870915, 2147483651, 8589934595, 34359738371, 137438953475, 549755813891, 2199023255555, 8796093022211, 35184372088835, 140737488355331, 562949953421315, 2251799813685251
Offset: 0

Views

Author

Brad Clardy, Mar 22 2011

Keywords

Comments

For n > 0, binary representation of a(n) is 1X11 where X is 2*n-1 zeros.
Number of conjugacy classes in Suzuki group Sz(2*4^n). - Eric M. Schmidt, Apr 18 2013

Examples

			The first seven terms written in binary are 101, 1011, 100011, 10000011, 1000000011, 100000000011, and 10000000000011.
		

Crossrefs

Cf. A141725 (4^(n+1)-3), A224790.

Programs

Formula

a(n) = A141725(n) - 2*A141725(n-1) for n > 0.
G.f.: (5-14*x)/((1-4*x)*(1-x)). - R. J. Mathar, Apr 09 2011
a(n) = 5*a(n-1) - 4*a(n-2). - Joerg Arndt, Apr 09 2011
From Felix P. Muga II, Mar 19 2014: (Start)
a(n) = a(n-1) + 6*4^(n-1) for n > 0, a(0)=5.
a(n) = a(n-1) + 12*a(n-2) - 36 for n > 1, a(0)=5, a(1)=11. (End)
E.g.f.: exp(x)*(2*exp(3*x) + 3). - Elmo R. Oliveira, Mar 08 2025